Continuous Dynamic Mapping to Identify the Corticospinal Tract in Motor Eloquent Brain Tumors: An Update

Author:

Seidel Kathleen1ORCID,Schucht Philippe1,Beck Jürgen12,Raabe Andreas1

Affiliation:

1. Inselspital Bern University Hospital – Neurosurgery, Bern, Switzerland

2. University of Freiburg – Neurosurgery, Freiburg, Germany

Abstract

Abstract Objective We recently developed a new subcortical mapping technique based on the concept of stimulating the tissue at the site of and synchronously with resection. Our hypothesis was that instead of performing resection and mapping sequentially, a synchronized resection and mapping could potentially improve deficit rates. Methods We report our 5-year series of patients who prospectively underwent tumor surgery adjacent to the corticospinal tract (CST) (defined as < 1 cm using diffusion tension imaging and fiber tracking) with simultaneous subcortical short train cathodal monopolar mapping, equipped with a new acoustic motor evoked potential (MEP) alarm. Continuous (temporal coverage) and dynamic (spatial coverage) mapping was realized technically by integrating the mapping probe at the tip of a new suction device. Motor function was assessed using the Medical Research Council scale (from M1 to M5) 1 day after surgery, at discharge, and at 3 months. Results Technically, the method was successful in all 182 cases. The lowest individual motor thresholds reached during resection were > 10 mA, n = 56; 6–10 mA, n = 31; 4–5 mA, n = 37; and 1–3 mA, n = 58. At 3 months, six patients (3%) had a persisting postoperative motor deficit that was caused by direct mechanical injury in three of these patients (1.7%). Conclusions Continuous dynamic mapping was found to be a feasible and ergonomic technique for localizing the exact site of the CST and distance to the motor fibers. This new technique may improve the safety of motor eloquent tumor surgery.

Publisher

Georg Thieme Verlag KG

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3