No Microscope? No Problem: A Systematic Review of Microscope-Free Microsurgery Training Models

Author:

Chen Jonlin1ORCID,Xun Helen1,Abousy Mya1,Long Chao1,Sacks Justin M.2

Affiliation:

1. Department of Plastic and Reconstructive Surgery, The Johns Hopkins School of Medicine, Baltimore, Maryland

2. Division of Plastic and Reconstructive Surgery, Washington University in St. Louis, St. Louis, Missouri

Abstract

Abstract Background Benchtop microsurgical training models that use digital tools (smartphones, tablets, and virtual reality [VR]) for magnification are allowing trainees to practice without operating microscopes. This systematic review identifies existing microscope-free training models, compares models in their ability to enhance microsurgical skills, and presents a step-by-step protocol for surgeons seeking to assemble their own microsurgery training model. Methods We queried PubMed, Embase, and Web of Science databases through November 2020 for microsurgery training models and performed a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We collected data including training model characteristics (cost, magnification, and components) and outcomes (trainee satisfaction, image resolution, and faster suturing speed). We also conducted a complimentary Google search to identify commercially available microscope-free microsurgical training models or kits not reported in peer-reviewed literature. Results Literature search identified 1,805 publications; 24 of these met inclusion criteria. Magnification tools most commonly included smartphones (n = 10), VR simulators (n = 4), and tablets (n = 3), with magnification ranging up to ×250 magnification on digital microscopy, ×50 on smartphones, and ×5 on tablets. Average cost of training models ranged from $13 (magnification lens) to $15,000 (augmented reality model). Model were formally assessed using workshops with trainees or attendings (n = 10), surveys to end-users (n = 5), and single-user training (n = 4); users-reported satisfaction with training models and demonstrated faster suturing speed and increased suturing quality with model training. Five commercially available microsurgery training models were identified through Google search. Conclusion Benchtop microsurgery trainers using digital magnification successfully provide trainees with increased ease of microsurgery training. Low-cost yet high magnification setups using digital microscopes and smartphones are optimal for trainees to improve microsurgical skills. Our assembly protocol, “1, 2, 3, Microsurgery,” provides instructions for training model set up to fit the unique needs of any microsurgery trainee.

Publisher

Georg Thieme Verlag KG

Subject

Surgery

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3