A Semantic-Based Framework for Verbal Autopsy to Identify the Cause of Maternal Death

Author:

Durrani Muhammad I. A.1,Naz Tabbasum1,Atif Muhammad1,Khalid Numra1,Amelio Alessia2

Affiliation:

1. Department of Computer Science & IT, The University of Lahore, Lahore, Pakistan

2. Independent Researcher, Cosenza (CS), Italy

Abstract

Abstract Objective Verbal autopsy is a technique used to collect information about a decedent from his/her family members using questionnaires, conducting interviews, making observations, and sampling. In substantial parts of the world, particularly in Africa and Asia, many deaths are unrecorded. In 2017, globally pregnant women were dying daily around 810 and 295,000 in a year because of pregnancy-related problems, pointed out by World Health Organization. Identifying the cause of a death is a complex process which requires in-depth medical knowledge and practical experience. Generally, medical practitioners possess different knowledge levels, set of abilities, and problem-solving skills. Additionally, the medical negligence plays a significant part in further worsening the situation. Accurate identification of the cause of death can help a government to take strategic measures to focus on, particularly increasing the death rate in a specific region. Methods This research provides a solution by introducing a semantic-based verbal autopsy framework for maternal death (SVAF-MD) to identify the cause of death. The proposed framework consists of four main components as follows: (1) clinical practice guidelines, (2) knowledge collection, (3) knowledge modeling, and (4) knowledge codification. Maternal ontology for the framework is developed using Protégé knowledge editor. Resource description framework application programming interface (API) for PHP (RAP) is used as a Semantic Web toolkit along with Simple Protocol and RDF Query Language (SPARQL) is used for querying with ontology to retrieve data. Results The results show that 92% of maternal causes of deaths assigned using SVAF-MD correctly matched manual reports already prepared by gynecologists. Conclusion SVAF-MD, a semantic-based framework for the verbal autopsy of maternal deaths, assigns the cause of death with minimum involvement of medical practitioners. This research helps the government to ease down the verbal autopsy process, overcome the delays in reporting, and facilitate in terms of accurate results to devise the policies to reduce the maternal mortality.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Computer Science Applications,Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3