Molecular Descriptors and QSAR Models for Sedative Activity of Sesquiterpenes Administered to Mice via Inhalation

Author:

Dougnon Godfried1ORCID,Ito Michiho2

Affiliation:

1. Department of Pharmacognosy, Kyoto University - Yoshida Campus, Kyoto, Japan

2. Graduate School of Pharmaceutical Sciences, Kyoto University - Yoshida Campus, Kyoto, Japan

Abstract

Essential oils are often utilized for therapeutic purposes and are composed of complex structural molecules, including sesquiterpenes, with high molecular weight and potential for stereochemistry. A detailed study on the properties of selected sesquiterpenes was conducted as part of a broader investigation on the effects of sesquiterpenes on the central nervous system. A set of 18 sesquiterpenes, rigorously selected from an original list of 114, was divided into 2 groups i.e., the training and test sets, with each containing 9 compounds. The training set was evaluated for the sedative activity in mice through inhalation, and all compounds were sedatives at any dose in the range of 4 × 10−4–4 × 10−2 mg/cage, except for curzerene. Molecular determinants of the sedative activities of sesquiterpenes were evaluated using quantitative structure–activity relationship (QSAR) and structure–activity relationship (SAR) analyses. An additional test set of six compounds obtained from the literature was utilized for validating the QSAR model. The parental carbonyl cation and an oxygen-containing groups are possible determinants of sedative activity. The QSAR study using multiple regression models could reasonably predict the sedative activity of sesquiterpenes with statistical parameters such as the correlation coefficient r2 = 0.82 > 0.6 and q2 LOO = 0.71 > 0.5 obtained using the leave-one-out cross-validation technique. Molar refractivity and the number of hydrogen bond acceptors were statistically important in predicting the activities. The present study could help predict the sedative activity of additional sesquiterpenes, thus accelerating the process of drug development.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Complementary and alternative medicine,Drug Discovery,Pharmaceutical Science,Pharmacology,Molecular Medicine,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3