Robotic-Assisted Anastomosis in Orthoplastic Surgery: Preliminary Data

Author:

Mori Francesco1,Menichini Giulio2,Rizzo Francesco1,Sassu Paolo1,Innocenti Marco

Affiliation:

1. Orthoplastic Department, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy

2. AOU Careggi, plastic reconstructive surgery and microsurgery, Florence, Italy

Abstract

Abstract Background The evolution of microsurgery has relied on advancements in operating microscopes and surgical instruments. Pioneering advancements, however, especially within the domain of “super-microsurgery”, challenge the limits of human dexterity by dealing with anastomoses between vessels smaller than 0.8 mm. Based on these premises, the Symani robotic system was designed and developed. This platform utilizes teleoperation and motion-scaled movement to provide surgeons with precision and accuracy in manipulating millimetre and submillimetre-sized anatomical structures. In this study, we present our experience in performing robotic-assisted anastomoses using the Symani Surgical System in free flap reconstruction. Methods We present a comprehensive analysis of all reconstructive procedures involving microsurgical free flaps performed using the Symani robotic platform at the orthoplastic unit of the Rizzoli Orthopaedic Institute from 1 October 2022 to 1 May 2023. Results Sixteen microsurgical reconstructions using free flaps were performed, involving a total of 40 anastomoses on vessel calibres ranging from 0.6 mm to 2.5 mm. In each case, the anastomosis was executed with the assistance of the robotic platform, achieving a 100+% success rate in patent anastomoses, and no major complications occurred.Conclusion The Symani system has proven to be safe and reliable in performing microsurgical anastomoses. While this platform demonstrated successful in various vessel calibres, its most promising potential lies in anastomoses below the size of a millimetre. Larger patient cohorts and extended investigation periods will be essential to explore whether robotics in microsurgery offers advantages across all microsurgical procedures or should be reserved for selected cases.

Publisher

Georg Thieme Verlag KG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correction: Robotic-Assisted Anastomosis in Orthoplastic Surgery: Preliminary Data;Handchirurgie · Mikrochirurgie · Plastische Chirurgie;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3