Simplifying Multimodal Clinical Research Data Management: Introducing an Integrated and User-friendly Database Concept

Author:

Schweinar Anna,Wagner Franziska,Klingner Carsten,Festag Sven1,Spreckelsen Cord1,Brodoehl Stefan

Affiliation:

1. Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Thüringen, Germany

Abstract

Abstract Background Clinical research, particularly in scientific data, grapples with the efficient management of multimodal and longitudinal clinical data. Especially in neuroscience, the volume of heterogeneous longitudinal data challenges researchers. While current research data management systems offer rich functionality, they suffer from architectural complexity that makes them difficult to install and maintain and require extensive user training. Objectives The focus is the development and presentation of a data management approach specifically tailored for clinical researchers involved in active patient care, especially in the neuroscientific environment of German university hospitals. Our design considers the implementation of FAIR (Findable, Accessible, Interoperable, and Reusable) principles and the secure handling of sensitive data in compliance with the General Data Protection Regulation. Methods We introduce a streamlined database concept, featuring an intuitive graphical interface built on Hypertext Markup Language revision 5 (HTML5)/Cascading Style Sheets (CSS) technology. The system can be effortlessly deployed within local networks, that is, in Microsoft Windows 10 environments. Our design incorporates FAIR principles for effective data management. Moreover, we have streamlined data interchange through established standards like HL7 Clinical Document Architecture (CDA). To ensure data integrity, we have integrated real-time validation mechanisms that cover data type, plausibility, and Clinical Quality Language logic during data import and entry. Results We have developed and evaluated our concept with clinicians using a sample dataset of subjects who visited our memory clinic over a 3-year period and collected several multimodal clinical parameters. A notable advantage is the unified data matrix, which simplifies data aggregation, anonymization, and export. This streamlines data exchange and enhances database integration with platforms like Konstanz Information Miner (KNIME). Conclusion Our approach offers a significant advancement for capturing and managing clinical research data, specifically tailored for small-scale initiatives operating within limited information technology (IT) infrastructures. It is designed for immediate, hassle-free deployment by clinicians and researchers.The database template and precompiled versions of the user interface are available at: https://github.com/stebro01/research_database_sqlite_i2b2.git.

Funder

Foundation “Else Kröner-Fresenius-Stiftung”

Publisher

Georg Thieme Verlag KG

Reference34 articles.

1. NFDI-Neuro: building a community for neuroscience research data management in Germany;T Wachtler;Neuroforum,2021

2. Reproducibility and efficiency in handling complex neurophysiological data;M Denker;Neuroforum,2021

3. A comparison of research data management platforms: architecture, flexible metadata and interoperability;R C Amorim;Univers Access Inf Soc,2017

4. The FAIR Guiding Principles for scientific data management and stewardship;M D Wilkinson;Sci Data,2016

5. Public data archiving in ecology and evolution: how well are we doing?;D G Roche;PLoS Biol,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3