Artificial Intelligence and Deep Learning for Advancing PET Image Reconstruction: State-of-the-Art and Future Directions

Author:

Hellwig Dirk123ORCID,Hellwig Nils Constantin13,Boehner Steven123,Fuchs Timo123,Fischer Regina123,Schmidt Daniel1ORCID

Affiliation:

1. Department of Nuclear Medicine, University Hospital Regensburg, Regensburg, Germany

2. Partner Site Regensburg, Bavarian Center for Cancer Research (BZKF), Regensburg, Germany

3. Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany

Abstract

AbstractPositron emission tomography (PET) is vital for diagnosing diseases and monitoring treatments. Conventional image reconstruction (IR) techniques like filtered backprojection and iterative algorithms are powerful but face limitations. PET IR can be seen as an image-to-image translation. Artificial intelligence (AI) and deep learning (DL) using multilayer neural networks enable a new approach to this computer vision task. This review aims to provide mutual understanding for nuclear medicine professionals and AI researchers. We outline fundamentals of PET imaging as well as state-of-the-art in AI-based PET IR with its typical algorithms and DL architectures. Advances improve resolution and contrast recovery, reduce noise, and remove artifacts via inferred attenuation and scatter correction, sinogram inpainting, denoising, and super-resolution refinement. Kernel-priors support list-mode reconstruction, motion correction, and parametric imaging. Hybrid approaches combine AI with conventional IR. Challenges of AI-assisted PET IR include availability of training data, cross-scanner compatibility, and the risk of hallucinated lesions. The need for rigorous evaluations, including quantitative phantom validation and visual comparison of diagnostic accuracy against conventional IR, is highlighted along with regulatory issues. First approved AI-based applications are clinically available, and its impact is foreseeable. Emerging trends, such as the integration of multimodal imaging and the use of data from previous imaging visits, highlight future potentials. Continued collaborative research promises significant improvements in image quality, quantitative accuracy, and diagnostic performance, ultimately leading to the integration of AI-based IR into routine PET imaging protocols.

Funder

Bavarian Center for Cancer Research

Bundesministerium für Bildung und Forschung

Publisher

Georg Thieme Verlag KG

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

Reference57 articles.

1. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten;J Radon;Berichte Über Verhandlungen K-Sächs Ges Wiss Zu Leipz Math-Phys Kl,1917

2. Strip Integration in Radio Astronomy;R Bracewell;Aust J Phys,1956

3. Real-Time 3D PET Image with Pseudoinverse Reconstruction;A López-Montes;Appl Sci,2020

4. Pancreatic cancer detected by positron emission tomography with 18F-labelled deoxyglucose: method and first results;R Bares;Nucl Med Commun,1993

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3