Are the Wear and Osteolysis Outcomes Different between Annealed and Remelted First-Generation Highly Crosslinked Polyethylene after Long-Term Implantation?

Author:

Schachtner Jaclyn T.1,MacDonald Daniel W.2ORCID,Klein Gregg R.3,Malkani Arthur L.4ORCID,Kraay Matthew5,Rimnac Clare M.6,Mont Michael A.7,Lee Gwo-Chin8,Kurtz Steven Michael12

Affiliation:

1. Department of Biomedical Engineering, Exponent Inc., Philadelphia, Pennsylvania

2. Implant Research Core, Drexel University School of Biomedical Engineering Science and Health Systems, Philadelphia, Pennsylvania

3. Department of Orthopaedic Surgery, Rothman Institute, Montvale, New Jersey

4. Department of Orthopedics, University of Louisville, Louisville, Kentucky

5. Department of Orthopaedics, University Hospitals Cleveland Medical Center, Cleveland, Ohio

6. Center for the Evaluation of Implant Performance, Case Western Reserve University Case School of Engineering, Cleveland, Ohio

7. Department of Orthopaedic Surgery, Lenox Hill Hospital at Northwell Health, New York City, New York

8. Department of Orthopaedic Surgery, Penn Presbyterian Medical Center, Philadelphia, Pennsylvania

Abstract

AbstractFirst-generation highly crosslinked polyethylene (HXLPE) was developed to reduce polyethylene wear debris and subsequent osteolysis. Two thermal stabilization strategies were developed, annealing and remelting, to remove free radicals remaining in the polymer. Both types of HXLPEs have demonstrated better wear resistance to conventional polyethylene in hip arthroplasty. However, few studies have directly compared the mid- to long-term clinical outcomes of first-generation HXLPEs. We sought to address the following research questions: (1) is there a difference between the revision reasons for HXLPE formulations (annealed and remelted), (2) is there a difference in oxidation between annealed and remelted HXLPEs, (3) is there a difference in the linear penetration rate of annealed and remelted HXLPEs, and (4) does the formulation of first-generation HXLPEs affect the prevalence of osteolysis? A total of 129 first-generation HXLPE acetabular liners were collected in a multicenter retrieval program. These components were implanted for 5 or more years and were fabricated from annealed or remelted HXLPE. Reasons for revision, body mass index, age, sex, and activity levels were collected from medical records. Oxidation was measured at four regions of interest: bearing surface, backside surface, locking mechanism, and rim. Liner penetration was directly measured from retrievals using a micrometer. Osteolysis was reported in the operative notes by the revising surgeon and a thorough review of the operative notes and radiographs. Revision reasons included infection, instability, pain, and loosening. The annealed liners had higher oxidation indices than remelted liners. There was no difference in linear penetration rates between cohorts. There was no difference in osteolysis prevalence between cohorts. We found remelted HXLPE to be more oxidatively stable than annealed HXLPE but did not find a significant difference in the linear penetration rates or the prevalence of osteolysis. Our findings demonstrate sustained long-term wear resistance of both cohorts of HXLPE. We did not find evidence to support a long-term clinical difference between the formulations of HXLPE.

Funder

U.S. Department of Health and Human Services

National Institutes of Health

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3