Bumpy Roads Lead to Beautiful Places: The Twists and Turns in Developing a New Class of PN-Heterocycles

Author:

Johnson Darren W.ORCID,Haley Michael M.ORCID,Bard Jeremy P.ORCID

Abstract

The Haley and Johnson labs at the University of Oregon have been collaborating since 2006, combining skillsets in synthetic organic, physical organic, and supramolecular chemistries. This joint project has produced many examples of host molecules that bind anionic guests and give chemical, photophysical, and/or electrical responses. Many of these receptors utilize two-armed arylethynyl backbones that have a variety of hydrogen- or halogen-bonding functional groups appended. However, in attempts to produce a bisamide-containing host using a peptide-coupling protocol with P(OPh)3 present, we isolated something unexpected – a heterocycle containing neighboring P and N atoms. This ‘failed’ reaction turned into a surprisingly robust synthesis of phosphaquinolinones, an unusual class of PN-heterocycles. This Account article tells the rollercoaster story of these heterocycles in our lab. It will highlight our key works to this field, including a suite of fundamental studies of both the original PN-naphthalene moiety, as well as a variety of structural modifications to the arene backbone. It will also discuss the major step forward the project took when we developed a phosphaquinolinone-containing receptor molecule capable of binding HSO4 – selectively, reversibly, and with recyclability. With these findings, the project has gone from hospice care to making a full, robust recovery.1 Introduction2 Initial Discovery3 Setbacks Breathe New Life4 A New Dynamic Duo Develops Dozens of Derivatives5 Physicochemical Characterization5.1 Fluorescence5.2 Molecular Structures5.3 Solution Dimerization Studies6 Applying What We Have Learned6.1 Development of Supramolecular Host6.2 Use of PN Moiety as an Impressive Fluorophore7 Conclusions and Outlook

Funder

Division of Chemistry

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3