Modern Synthesis and Chemistry of Stabilized, Ketene N,O-Acetals

Author:

Paris Timothy J.1,Willand-Charnley Rachel2ORCID

Affiliation:

1. Chemistry, Stanford University, Stanford, United States

2. Chemistry and Biochemistry, South Dakota State University, Brookings, United States

Abstract

Ketene N,O-acetals are robust and versatile synthons. Herein, we outline the synthesis of stable ketene N,O-acetals in the twenty-first century. In addition, we review recent developments in the chemistry of ketene N,O-acetals, as it applies to the vinylogous Mukaiyama aldol reaction, electrolysis, and pericyclic transformations. While dated reports rely on in situ use, modern methods of ketene N,O-acetal synthesis are heavily oriented towards producing products with high “bench” stability; moreover, in the present century, chemists typically enhance the stability of ketene N,O-acetals by positioning an electron-withdrawing group at the β-terminus or at the N-position. As propitious substrates in the vinylogous Mukaiyama aldol reaction, ketene N,O-acetals readily provide polyketide adducts with high regioselectivity. When exposed to electrolysis conditions, the title functional group forms a reactive radical cation and cleanly couples with a variety of activated olefins. Given their electron-rich nature, ketene N,O-acetals act as facile substrates in several rearrangement reactions; further, ketene N,O-acetals reserve the ability to act as either dienophiles or dienes in Diels-Alder reactions. Lastly, ketene N,O-acetals are seemingly more stable than their O,O- counterparts and more reactive than analogous N,N- or S,S-acetals; these factors, in combination, make ketene N,O-acetals advantageous substitutes for other ketene acetal homologs.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3