Characterization of an In Vitro Model to Study the Permeability of Human Arterial Endothelial Cell Monolayers

Author:

Langeler Erna G1,van Hinsbergh Victor W M1

Affiliation:

1. The Gaubius Institute TNO, Leiden, The Netherlands

Abstract

SummaryA model has been developed to study the transport of fluid and macromolecules through human arterial umbilical cord endothelial cell monolayers in vitro. Cells were cultured on fibronectin- coated polycarbonate filters and formed within a few days a tight monolayer, with an electrical resistance of 17 ± 4 Ohm · cm2. The cells were connected by close cell contacts with tight junctions. The passáge-rate of horse radish peroxidase (HRP) through these filters was 20-40 fold lower than through filters without an endothelial monolayer. The continuous presence of 10% human serum was needed to maintain the electrical resistance of the monolayer and its barrier function towards macromolecules. Chelation of extracellular calcium resulted in an increased permeability and a decreased electrical resistance of the monolayer. This process was reversible by re-addition of calcium ions to the cells. The permeation rate of dextrans of various molecular weights (9-480 kD) was inversely related to the molecular mass of the molecule. No difference was measured between the passage rate of dextran of 480 kD and dextran of 2,000 kD. Incubation of the endothelial cell monolayer with 2-deoxy-D-glucose resulted in a decreased permeability but it had no effect on electrical resistance. This suggests that the passage-process is energy- dependent.Fluid permeation through the endothelial cell monolayer on filters was measured in a perfusion chamber under 20 mmHg hydrostatic pressure. It was decreased by the presence of serum proteins and responded reversibly on the chelation and readdition of extracellular calcium ions.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3