Probabilistic Graphical Models for Computational Biomedicine

Author:

Antal P.,Fannes G.,De Moor B.,Moreau Y.

Abstract

Summary Background: As genomics becomes increasingly relevant to medicine, medical informatics and bioinformatics are gradually converging into a larger field that we call computational biomedicine. Objectives: Developing a computational framework that is common to the different disciplines that compose computational biomedicine will be a major enabler of the further development and integration of this research domain. Methods: Probabilistic graphical models such as Hidden Markov Models, belief networks, and missing-data models together with computational methods such as dynamic programming, Expectation-Maximization, data-augmentation Gibbs sampling, and the Metropolis-Hastings algorithm provide the tools for an integrated probabilistic approach to computational biomedicine. Results and Conclusions: We show how graphical models have already found a broad application in different fields composing computational biomedicine. We also indicate several challenges that lie at the interface between medical informatics, statistical genomics, and bioinformatics. We also argue that graphical models offer a unified framework making it possible to integrate in a statistically meaningful way multiple models ranging from the molecular level to cellular and to clinical levels. Because of their versatility and firm statistical underpinning, we assert that probabilistic graphical models can serve as the lingua franca for many computationally intensive approaches to biology and medicine. As such, graphical models should be a foundation of the curriculum of students in these fields. From such a foundation, students could then build towards specific computational methods in medical informatics, medical image analysis, statistical genetics, or bioinformatics while keeping the communication open between these areas.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3