Factor V Enhances the Cofactor Function of Protein S in the APC-Mediated Inactivation of Factor VIII: Influence of the Factor VR506Q Mutation

Author:

Váradi K1,Rosing J2,Tans G2,Pabinger I3,Keil B1,Schwarz H P1

Affiliation:

1. The Research Laboratories of Immuno AG, Vienna, Austria

2. Department of Biochemistry, University of Limburg, Maastricht, The Netherlands

3. Department of Haematology, University Hospital, Vienna, Austria

Abstract

SummaryFactor V and protein S are cofactors of activated protein C (APC) which accelerate APC-mediated factor VIII inactivation. The effects of factor V and protein S were quantitated in a reaction system in which plasma factor VIII was inactivated by APC and the loss of factor VIII activity was monitored in a factor X-activating system in which a chro-mogenic substrate was used to probe factor Xa formation. Factor V increased the rate of APC-mediated factor VIII inactivation in a dose-dependent manner in representative plasma samples with protein S or factor V deficiency, abnormal factor V (heterozygous or homozygous for factor VR506Q), or a combination of heterozygous protein S deficiency and heterozygous factor VR506Q. This effect was much less pronounced in the plasma samples with a decreased protein S level, but the impaired response in these plasmas was corrected by addition of protein S, indicating that both factor V and protein S are required for optimal inactivation of factor VIII by APC. The effects of factor V and protein S were also studied in a reaction system with purified proteins. APC-catalysed factor VIII inactivation was enhanced 3.7-fold in the presence of 1.1 nM factor V and 1.5-fold in the presence of 2.4 nM protein S. When both 1.1 nM factor V and 2.4 nM protein were present the rate enhancement was 11-fold. Factor V is a more potent cofactor than protein S, as can be concluded from the fact that 0.04 nM factor V gave the same stimulation as 2.4 nM protein S. Protein S lost its cofactor function after complexation with C4b binding protein, which indicates that it is free protein S that acts as a cofactor. To investigate the effect of the R506Q mutation in factor V on APC-mediated factor VIII inactivation, factor V was purified from the plasma of patients homozygous for factor VR506Q. In the absence of protein S, factor VR506Q did not enhance factor VIII inactivation by APC, but in the presence of 2.4 nM protein S a slight enhancement was observed. The APC cofactor activity of factor V was lost when factor V was activated with thrombin or with the factor V activator from Russell’s viper venom. These data indicate that optimal inactivation of factor VIII by APC requires the presence of an intact factor V molecule and free protein S.

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3