Extended Retrosigmoid Approach for the Resection of a Pontomedullary Junction Cavernous Malformation

Author:

Basma Jaafar1,Nguyen Vincent1,Sorenson Jeffrey1,Michael L.1

Affiliation:

1. Department of Neurosurgery, University of Tennessee, Memphis, Tennessee, United States

Abstract

Objectives To describe an extended retrosigmoid approach for the resection of a cavernoma involving the ponto-medullary junction, with emphasis on the microsurgical anatomy and technique. Design A retrosigmoid craniotomy is performed in the lateral decubitus position and the sigmoid sinus exposed. After opening the dura, sutures are placed medial to the sinus to allow its gentle mobilization. Cerebrospinal fluid (CSF) is drained from the cisterna magna, and cerebellopontine cistern, and dynamic retraction is used over the cerebellum. Subarachnoid dissection of the cerebellopontine angle gives access to cranial nerves IX/X, VII/VIII, and VI. Inspection of the pontomedullary junction medial to the facial nerve reveals hemosiderin staining in that region. A small pial opening is made, exposing the hemorrhagic cavity. The cavernous malformation is then identified, dissected circumferentially, and resected. Photographs of the region are borrowed from Dr Rhoton's laboratory to illustrate the microsurgical anatomy. Participants The senior author performed the surgery. The video was edited by Drs. J.B. and V.N. Outcome Measures Outcome was assessed with extent of resection and postoperative neurological function. Results A gross total resection of the lesion was achieved. The patient did not develop any postoperative deficits. Conclusion Understanding the microsurgical anatomy of the cerebellopontine angle and meticulous microneurosurgical technique are necessary to achieve a complete resection of a brainstem cavernoma. The extended retrosigmoid approach provides an adequate corridor to the pontomedullary junction.The link to the video can be found at: https://youtu.be/FIKixWJT75w.

Publisher

Georg Thieme Verlag KG

Subject

Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3