Conjugate Alkynylation of Electrophilic Double Bonds. From Regioselectivity to Enantioselectivity

Author:

Blay Gonzalo1ORCID,Pedro José1ORCID,Sanz-Marco Amparo1

Affiliation:

1. Departament de Química Orgànica, Facultat de Química, Universitat de València

Abstract

This review surveys the historical efforts addressed toward the development of the conjugate alkynylation reaction. The regio- and enantioselective conjugate alkynylation of electron-deficient double bonds, most commonly unsaturated carbonyl compounds, has been an elusive reaction for a long time. Intensive research during the last decades has resulted in the identification of a number of effective reagents and catalysts to perform this reaction. Non-stereoselective conjugate alkynylation of unsaturated carbonyl compounds was first achieved by using preformed alkynyl organometallics and later with terminal alkynes under catalytic conditions. These methods paved the way for the development of enantioselective procedures. After initial methods requiring stoichiometric amounts of chiral material, the findings by Corey on Ni-catalyzed addition of alkynylalanes and, particularly, by Carreira on Cu-catalyzed addition of terminal alkynes boosted the research on the development other asymmetric procedures catalyzed by Cu, Zn, Rh, Co, Ru and Pd complexes. The alkynylation of electrophilic alkenes conjugated with groups other than carbonyl and the alkynylation of extended conjugated systems are also discussed in the last part of this review.1 Introduction2 Non-Stereoselective Conjugate Alkynylation of α,β-Unsaturated Carbonyl Compounds3 Enantioselective Conjugate Alkynylation of α,β-Unsaturated Carbonyl Compounds4 Non-Stereoselective and Enantioselective Alkynylation of Other Electrophilic Alkenes5 γ-Alkynylation of α,β-Unsaturated Amides and δ-Alkynylation of Electrophilic Dienes6 Alternative Enantioselective Procedures7 Conclusion and Outlook

Funder

European Regional Development Fund

European Social Fund

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3