Unveiling the Molecular Mechanisms Behind the Devastating Impact of the ALK Protein on Pediatric Cancers: Insights into Deleterious SNPs through In Silico Predictions, Molecular Docking, and Dynamics Studies

Author:

Almazroea Abdulhadi1

Affiliation:

1. Associate Professor of General Pediatrics, Medical College, Taibah University, Saudi Arabia

Abstract

AbstractIntroduction Pediatric cancers present significant challenges in terms of diagnosis and treatment, and the anaplastic lymphoma kinase (ALK) protein has emerged as a crucial molecular target in these malignancies. ALK, a receptor tyrosine kinase, plays a vital role in normal cellular processes, but genetic alterations and aberrant activation of the ALK gene have been implicated in various pediatric cancer types. While genetic alterations have been well studied, the precise molecular mechanisms underlying the pathogenicity of the ALK protein in pediatric cancers remain poorly understood.Objective In this study, the primary objective is to uncover the molecular mechanisms associated with the effects of deleterious single-nucleotide polymorphisms (SNPs) on the structure and functionality of the ALK protein.Material and Methods Several known point mutations of the ALK protein were taken for the in silico predictions such as PolyPhen-2, SIFT, PANTHER, PredictSNP, etc., residue conservation analysis using Consurf server, molecular docking (AutoDock), and molecular dynamics simulation studies (GROMACS).Results The computation predictions found that the studied variants are deleterious in different tools. The residue conservation analysis reveals all the variants are located in highly conserved regions. The molecular docking study of wild-type and mutant structures with the crizotinib drug molecule found the variants were modulating the binding cavity and had a strong impact on the binding affinity. The binding energy of the wild-type is –5.896 kcal/mol, whereas the mutants have –9.988 kcal/mol. The specific amino acid Ala1200 of wild-type was found to interact with crizotinib, and Asp1203 residue was found to interact predominantly in the mutant structures.Conclusion The simulation study differentiates the variants in terms of structural stability and residue fluctuation. Among the studied variants, R1275Q, F1245V, and F1174L had strong deleterious effects, structural changes, and pathogenicity based on the in silico predictions. By elucidating the functional consequences of deleterious mutations within the ALK gene, this research may uncover novel therapeutic targets and personalized medicine approaches for the management of pediatric cancers. Ultimately, gaining insights into the molecular mechanisms of the ALK protein's role in driving response and resistance will contribute to improving patient outcomes and advancing our understanding of this complex disease.

Publisher

Georg Thieme Verlag KG

Subject

Oncology,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3