Comprehensive Analysis of Hemophilia A (CAHEA): Towards Full Characterization of the F8 Gene Variants by Long-Read Sequencing

Author:

Liu Yingdi1,Li Dongzhi2,Yu Dongyi3,Liang Qiaowei4,Chen Guilan2,Li Fucheng2,Gao Lu3,Li Zhuo1,Xie Tiantian5,Wu Le5,Mao Aiping5,Wu Lingqian14,Liang Desheng14

Affiliation:

1. Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China

2. Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China

3. Center for Medical Genetics and Prenatal Diagnosis, Shandong Provincial Maternal and Child Health Care Hospital, Shandong Medicine and Health Key Laboratory of Birth Defect Prevention and Genetic Medicine, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Jinan, Shandong, China

4. Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China

5. Berry Genomics Corporation, Beijing, China

Abstract

Background Hemophilia A (HA) is the most frequently occurring X-linked bleeding disorder caused by heterogeneous variants in the F8 gene, one of the largest genes known. Conventional molecular analysis of F8 requires a combination of assays, usually including long-range polymerase chain reaction (LR-PCR) or inverse-PCR for inversions, Sanger sequencing or next-generation sequencing for single-nucleotide variants (SNVs) and indels, and multiplex ligation-dependent probe amplification for large deletions or duplications. Materials and Methods This study aimed to develop a LR-PCR and long-read sequencing-based assay termed comprehensive analysis of hemophilia A (CAHEA) for full characterization of F8 variants. The performance of CAHEA was evaluated in 272 samples from 131 HA pedigrees with a wide spectrum of F8 variants by comparing to conventional molecular assays. Results CAHEA identified F8 variants in all the 131 pedigrees, including 35 intron 22-related gene rearrangements, 3 intron 1 inversion (Inv1), 85 SNVs and indels, 1 large insertion, and 7 large deletions. The accuracy of CAHEA was also confirmed in another set of 14 HA pedigrees. Compared with the conventional methods combined altogether, CAHEA assay demonstrated 100% sensitivity and specificity for identifying various types of F8 variants and had the advantages of directly determining the break regions/points of large inversions, insertions, and deletions, which enabled analyzing the mechanisms of recombination at the junction sites and pathogenicity of the variants. Conclusion CAHEA represents a comprehensive assay toward full characterization of F8 variants including intron 22 and intron 1 inversions, SNVs/indels, and large insertions and deletions, greatly improving the genetic screening and diagnosis for HA.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Georg Thieme Verlag KG

Subject

Hematology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3