Affiliation:
1. Faculty of Arts and Science
2. Department of Chemistry
Abstract
AbstractC–H bonds are ubiquitous and abundant in organic molecules. If such C–H bonds can be converted into the desired functional groups in a site-, chemo-, diastereo-, and enantio-selective manner, the functionalization of C–H bonds would be an efficient tool for step-, atom- and redox-economic organic synthesis. C–H oxidation, as a typical C–H functionalization, affords hydroxy and carbonyl groups, which are key functional groups in organic synthesis and biological chemistry, directly. Recently, significant developments have been made using non-heme-type transition-metal catalysts. Oxygen functional groups can be introduced to not only simple hydrocarbons but also complex natural products. In this paper, recent developments over the last fourteen years in non-heme-type complex-catalyzed C–H oxidations are reviewed.1 Introduction2 Regio- and Chemo-Selective C–H Oxidations2.1 Tertiary Site-Selective C–H Oxidations2.2 Secondary Site-Selective C–H Oxidations2.3 C–H Oxidations of N-Containing Molecules2.4 C–H Oxidations of Carboxylic Acids2.5 Chemo- and Site-Selective Methylenic C–H Hydroxylations3 Enantioselective C–H Oxidations3.1 Desymmetrizations through C–H Oxidations3.2 Enantiotopic Methylenic C–H Oxygenations4 Conclusion
Subject
Organic Chemistry,Catalysis
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献