Targeted Gene Panel Sequencing for Molecular Diagnosis of Kallmann Syndrome and Normosmic Idiopathic Hypogonadotropic Hypogonadism

Author:

Kim Ja Hye1,Seo Go Hun1,Kim Gu-Hwan2,Huh Juyoung3,Hwang Il Tae4,Jang Ja-Hyun5,Yoo Han-Wook1,Choi Jin-Ho1

Affiliation:

1. Department of Pediatrics, Asan Medical Center Children’s Hospital, University of Ulsan College of Medicine, Seoul, Korea

2. Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

3. Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

4. Department of Pediatrics, Hallym University Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea

5. Green Cross Genome, Yongin, Korea

Abstract

Abstract Background Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) is classified either as Kallmann syndrome (KS) with anosmia or normosmic idiopathic hypogonadotropic hypogonadism (nIHH) and caused by mutations in more than 30 different genes. Recent advances in next-generation sequencing technologies have revolutionized the identification of causative genes by using massively parallel sequencing of multiple samples. This study was performed to establish the genetic etiology of IGD using a targeted gene panel sequencing of 69 known human IGD genes. Methods This study included 28 patients with IGD from 27 independent families. Exomes were captured using customized SureSelect kit (Agilent Technologies) and sequenced on the Miseq platform (Illumina, Inc.), which includes a 163,269 bp region spanning 69 genes. Results Four pathogenic and six likely pathogenic sequence variants were identified in 11 patients from 10 of the 27 families (37%) included in the study. We identified two known pathogenic mutations in CHD7 and PROKR2 from two male patients (7.4%). Novel sequence variants were also identified in 10 probands (37%) in CHD7, SOX3, ANOS1, FGFR1, and TACR3. Of these, while eight variants (29.6%) were presumed to be pathogenic or likely pathogenic, the remaining two were classified as variants of uncertain significance. Of the two pre-pubertal males with anosmia, one harbored a novel heterozygous splice site variant in FGFR1. Conclusions The overall diagnostic yield was 37% of the patients who had undergone targeted gene panel sequencing. This approach enables rapid, cost-effective, and comprehensive genetic screening in patients with KS and nIHH.

Publisher

Georg Thieme Verlag KG

Subject

Endocrinology,General Medicine,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3