Assessment of colonoscopy skill using machine learning to measure quality: Proof-of-concept and initial validation

Author:

Wittbrodt Matthew1,Klug Matthew1,Etemadi Mozziyar,Yang Anthony2,Pandolfino John E.3,Keswani Rajesh N.3

Affiliation:

1. Information Services, Northwestern Medicine, Chicago, United States

2. Surgery, Indiana University School of Medicine, Indianapolis, United States

3. Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States

Abstract

Abstract Background and study aims Low-quality colonoscopy increases cancer risk but measuring quality remains challenging. We developed an automated, interactive assessment of colonoscopy quality (AI-CQ) using machine learning (ML). Methods Based on quality guidelines, metrics selected for AI development included insertion time (IT), withdrawal time (WT), polyp detection rate (PDR), and polyps per colonoscopy (PPC). Two novel metrics were also developed: HQ-WT (time during withdrawal with clear image) and WT-PT (withdrawal time subtracting polypectomy time). The model was pre-trained using a self-supervised vision transformer on unlabeled colonoscopy images and then finetuned for multi-label classification on another mutually exclusive colonoscopy image dataset. A timeline of video predictions and metric calculations were presented to clinicians in addition to the raw video using a web-based application. The model was externally validated using 50 colonoscopies at a second hospital. Results The AI-CQ accuracy to identify cecal intubation was 88%. IT (P = 0.99) and WT (P = 0.99) were highly correlated between manual and AI-CQ measurements with a median difference of 1.5 seconds and 4.5 seconds, respectively. AI-CQ PDR did not significantly differ from manual PDR (47.6% versus 45.5%, P = 0.66). Retroflexion was correctly identified in 95.2% and number of right colon evaluations in 100% of colonoscopies. HQ-WT was 45.9% of, and significantly correlated with (P = 0.85) WT time. Conclusions An interactive AI assessment of colonoscopy skill can automatically assess quality. We propose that this tool can be utilized to rapidly identify and train providers in need of remediation.

Funder

Betty and Gordon Moore Foundation

Digestive Health Foundation

Publisher

Georg Thieme Verlag KG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3