Application of Artificial Neural Networks for Prognostic Modeling in Lung Cancer after Combining Radiomic and Clinical Features

Author:

Chufal Kundan S.1,Ahmad Irfan1,Pahuja Anjali K.1,Miller Alexis A.2,Singh Rajpal1,Chowdhary Rahul L.1

Affiliation:

1. Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India

2. Department of Radiation Oncology, Illawara Cancer Care Centre, Wollongong, Australia

Abstract

Abstract Objective This study was aimed to investigate machine learning (ML) and artificial neural networks (ANNs) in the prognostic modeling of lung cancer, utilizing high-dimensional data. Materials and Methods A computed tomography (CT) dataset of inoperable nonsmall cell lung carcinoma (NSCLC) patients with embedded tumor segmentation and survival status, comprising 422 patients, was selected. Radiomic data extraction was performed on Computation Environment for Radiation Research (CERR). The survival probability was first determined based on clinical features only and then unsupervised ML methods. Supervised ANN modeling was performed by direct and hybrid modeling which were subsequently compared. Statistical significance was set at <0.05. Results Survival analyses based on clinical features alone were not significant, except for gender. ML clustering performed on unselected radiomic and clinical data demonstrated a significant difference in survival (two-step cluster, median overall survival [ mOS]: 30.3 vs. 17.2 m; p = 0.03; K-means cluster, mOS: 21.1 vs. 7.3 m; p < 0.001). Direct ANN modeling yielded a better overall model accuracy utilizing multilayer perceptron (MLP) than radial basis function (RBF; 79.2 vs. 61.4%, respectively). Hybrid modeling with MLP (after feature selection with ML) resulted in an overall model accuracy of 80%. There was no difference in model accuracy after direct and hybrid modeling (p = 0.164). Conclusion Our preliminary study supports the application of ANN in predicting outcomes based on radiomic and clinical data.

Publisher

Georg Thieme Verlag KG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3