Black Bone MRI for Virtual Surgical Planning in Craniomaxillofacial Surgery

Author:

Vyas Krishna S.1,Suchyta Marissa A.1,Hunt Christopher H.2,Gibreel Waleed1,Mardini Samir123

Affiliation:

1. Division of Plastic Surgery, Department of Surgery, Mayo Clinic, Rochester, Minnesota

2. Department of Radiology, Mayo Clinic, Rochester, Minnesota

3. Essam and Dalal Obaid Center for Reconstructive Transplant Surgery, Mayo Clinic, Rochester, Minnesota

Abstract

AbstractAdvances in computer-aided design and computer-aided manufacturing software have improved translational applications of virtual surgical planning (VSP) in craniomaxillofacial surgery, allowing for precise and accurate fabrication of cutting guides, stereolithographic models, and custom implants. High-resolution computed tomography (CT) imaging has traditionally been the gold standard imaging modality for VSP in craniomaxillofacial surgery but delivers ionizing radiation. Black bone magnetic resonance imaging (MRI) reduces the risks related to radiation exposure and has comparable functionality when compared with CT for VSP. Our group has studied the accuracy of utilizing black bone MRI in planning and executing several types of craniofacial surgeries, including cranial vault remodeling, maxillary advancement, and mandibular reconstruction using fibular bone. Here, we review clinical applications of black bone MRI pertaining to VSP and three-dimensional (3D)-printed guide creation for craniomaxillofacial surgery. Herein, we review the existing literature and our institutional experience comparing black bone MRI and CT in VSP-generated 3D model creation in cadaveric craniofacial surgeries including cranial vault reconstruction, maxillary advancement, and mandibular reconstruction with fibular free flap. Cadaver studies have demonstrated the ability to perform VSP and execute the procedure based on black bone MRI data and achieve outcomes similar to CT when performed for cranial vault reshaping, maxillary advancement, and mandibular reconstruction with free fibula. Limitations of the technology include increased time and costs of the MRI compared with CT and the possible need for general anesthesia or sedation in the pediatric population. VSP and 3D surgical guide creation can be performed using black bone MRI with comparable accuracy to high-resolution CT scans in a wide variety of craniofacial reconstructions. Successful segmentation, VSP, and 3D printing of accurate guides from black bone MRI demonstrate potential to change the preoperative planning standard of care. Black bone MRI also reduces exposure to ionizing radiation, which is of particular concern for the pediatric population or patients undergoing multiple scans.

Publisher

Georg Thieme Verlag KG

Subject

Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3