Ultra-Sonicated One-Pot Synthesis of Potent Bioactive Biscoumarin and Polycyclic Pyranodichromenone Scaffolds in Aqueous Media: A Complementary Tool to Organic Synthesis

Author:

Bharti Ruchi1ORCID,Thakur Ajay1,Verma Monika1,Sharma Renu1,Sharma Ajay1,Gupta Anshi2,Sharma Vipasha2

Affiliation:

1. Department of Chemistry, University Institute of Sciences, Chandigarh University

2. Department of Biotechnology, University Institute of Biotechnology, Chandigarh University,

Abstract

AbstractPresent study involves the synthesis of bis-coumarins and novel polycyclic pyranodichromenones using a catalyst-free approach under ultrasonic irradiation in an aqueous medium. The chemical structures of the synthesized compounds were characterized using FTIR, 1H NMR, and 13C NMR spectroscopy. The antibacterial and antifungal activities of the compounds were evaluated against Gram-positive (S. aureus, B. cereus) and Gram-negative bacteria (P. aeruginosa, E. coli), as well as the fungus C. albicans, using the disc diffusion method. Several compounds exhibited excellent activity against the tested microorganisms. Moreover, the antioxidant potential of the synthesized products was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethyl­benzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging, and total antioxidant capacity (TAC) assays. Promising antioxidant activity was observed for certain compounds. Computational studies using density functional theory (DFT) were conducted to investigate the molecular reactivity and electronic properties of the synthesized compounds. Quantum mechanical parameters such as Ionization Potential (IP), Electron Affinity (EA), Mulliken Electronegativity (χ), Chemical Potential (μ), and Electrophilicity Index (ω) were calculated. The study highlights the efficiency and eco-friendliness of ultrasonic-assisted processes, contributing to the advancement of sustainable chemistry.

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3