Recent Advances in [3+2]-Cycloaddition-Enabled Cascade Reactions: Application to Synthesize Complex Organic Frameworks

Author:

Erande Rohan D.,Shivam Shivam.,Chavan Kailas A.,Chauhan Amar N. S.

Abstract

AbstractMany natural products and biologically important complex organic scaffolds have convoluted structures around their core skeleton. Interestingly, with just changing the outskirts, the core reflects new and unique degrees of various physical and chemical properties. A very common but intriguing core is a five-membered ring horning heaps of organic molecules crafts. The power of [3+2] cycloaddition reactions to generate five-membered ring systems allocate chemists to envision synthetic procedures of wonder molecules and if it is facilitating a cascade sequence, then the end product will imbibe significant level of complexity having applications in medicinal and pharmaceutical fields. This Account highlights the broad interest in assembling recent advances in cascade reactions involving [3+2] cycloaddition as the power tool in order to conceive breakthrough organic architectures reported in the last ten years. We foresee that our comprehensive collection of astonishing [3+2] cycloaddition enabled cascades will provide valuable insights to polycyclic molecular construction and perseverant approach towards nonconventional synthetic procedures to the organic community.1 Introduction2 Synthesis of Oxindoles Skeleton3 Synthesis of Oxazoles Skeleton4 Synthesis of Oxadiazoles Skeleton5 Synthesis of Nitrogen-Containing Heterocycles6 Synthesis via Formal [3+2] Cycloaddition7 Synthesis of Miscellaneous Scaffolds8 Conclusion

Funder

Indian Institute of Technology Jodhpur

Publisher

Georg Thieme Verlag KG

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3