The Relationship between Contralateral Suppression of Transient Evoked Otoacoustic Emission and Unmasking of Speech Evoked Auditory Brainstem Response

Author:

Kalaiah Mohan Kumar1ORCID,Mishra Keshav1ORCID,Shastri Usha1ORCID

Affiliation:

1. Department of Audiology and Speech Language Pathology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India

Abstract

Abstract Introduction Several studies have shown that efferent pathways of the auditory system improve perception of speech-in-noise. But, the majority of investigations assessing the role of efferent pathways on speech perception have used contralateral suppression of otoacoustic emissions as a measure of efferent activity. By studying the effect of efferent activity on the speech-evoked auditory brainstem response (ABR), some more light could be shed on the effect of efferent pathways on the encoding of speech in the auditory pathway. Objectives To investigate the relationship between contralateral suppression of transient evoked otoacoustic emission (CSTEOAE) and unmasking of speech ABR. Methods A total of 23 young adults participated in the study. The CSTEOAE was measured using linear clicks at 60 dB peSPL and white noise at 60 dB sound pressure level (SPL). The speech ABR was recorded using the syllable /da/ at 80 dB SPL in quiet, ipsilateral noise, and binaural noise conditions. In the ipsilateral noise condition, white noise was presented to the test ear at 60 dB SPL, and, in the binaural noise condition, two separate white noises were presented to both ears. Results The F0 amplitude of speech ABR was higher in quiet condition; however, the mean amplitude of F0 was not significantly different across conditions. Correlation analysis showed a significant positive correlation between the CSTEOAE and the magnitude of unmasking of F0 amplitude of speech ABR. Conclusions The findings of the present study suggests that the efferent pathways are involved in speech-in-noise processing.

Publisher

Georg Thieme Verlag KG

Subject

Otorhinolaryngology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3