Abstract
In this paper, we make the numerical analysis of the mild solution which is also an entropy solution of parabolic problem involving the \(p(x)-\)Laplacian operator with \(L^1-\) data.
Publisher
Universidad de La Frontera
Subject
Geometry and Topology,Logic,Algebra and Number Theory,Analysis
Reference30 articles.
1. S. N. Antontsev and S. I. Shmarev, “A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions”, Nonlinear Anal., vol. 60, no. 3, pp. 515–545, 2005.
2. S. N. Antontsev and V. Zhikov, “Higher integrability for parabolic equations of p(x, t)- Laplacian type”, Adv. Differential Equations, vol. 10, no. 9, pp. 1053–1080, 2005.
3. M. Bendahmane, K. H. Karlsen and M. Saad, “Nonlinear anisotropic elliptic and parabolic equations with variable exponents and L1 data”, Commun. Pure Appl. Anal., vol. 12, no. 3, pp. 1201–1220, 2013.
4. M. Bendahmane and P. Wittbold and A. Zimmermann, “Renormalized solutions for a nonlinear parabolic equation with variable exponents and L1−data”, J. Differential Equations, vol. 249, no. 6, pp. 1483–1515, 2010.
5. Ph. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, “An L1- theory of existence and uniqueness of solutions of nonlinear elliptic equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), vol. 22, no. 2, pp. 241–273, 1995.