Variability of Primary Productivity as an Initial Link in Carbon Flux Under the Influence of Hydrological Conditions in the Baltic Sea
Author:
Mosharov Sergey12ORCID, Mosharova Irina32ORCID, Borovkova Kristina2ORCID, Bubnova Ekaterina32ORCID
Affiliation:
1. Shirshov Institute of Oceanology 2. Immanuel Kant Baltic Federal University 3. Shirshov Institute of Oceanology of Russian Academy of Sciences
Abstract
Investigating variability in phytoplankton primary productivity as a key component of the “biological pump” is critical to quantifying flux in the marine environment. We hypothesized that under certain hydrological conditions, changes in phytoplankton productivity are greater with changes in photosynthetic efficiency (the ratio of primary production (P P ) to the rate of electron transport in the phytoplankton photosystem, P P /ETR) than with changes in chlorophyll content. This study showed that increase of P P during sharp changes in hydrological parameters in the temporary frontal South-East Baltic (SEB) is achieved by increasing the efficiency of photosynthesis, i.e., the degree of use of light energy captured by chlorophyll a (Chl a). In the Gulf of Finland (GF), an increase in P P followed an increase in salinity from the Neva mouth to the sea and controls chlorophyll contents with low variability in photosynthetic efficiency. For SEB and GF, measurements of parameters of phytoplankton productivity and chlorophyll a content in late autumn (November) are carried out. The first stage of carbon flow (in biological pump), expressed in terms of primary production, was higher in the SEB than in the GF
Publisher
Geophysical Center of the Russian Academy of Sciences
Reference33 articles.
1. Aleksandrov, S. V. (2010), Biological production and eutrophication of Baltic Sea estuarine ecosystems: The Curonian and Vistula Lagoons, Marine Pollution Bulletin, 61(4–6), 205–210, https://doi.org/10.1016/j.marpolbul.2010.02.015., Aleksandrov, S. V. (2010), Biological production and eutrophication of Baltic Sea estuarine ecosystems: The Curonian and Vistula Lagoons, Marine Pollution Bulletin, 61(4–6), 205–210, https://doi.org/10.1016/j.marpolbul.2010.02.015. 2. Behrenfeld, M. J., and P. G. Falkowsk (1997), Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnology and Oceanography, 42(1), 1–20., Behrenfeld, M. J., and P. G. Falkowsk (1997), Photosynthetic rates derived from satellite-based chlorophyll concentration, Limnology and Oceanography, 42(1), 1–20. 3. Ciotti, A. M., M. R. Lewis, and J. J. Cullen (2002), Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient, Limnology and Oceanography, 47(2), 404–417., Ciotti, A. M., M. R. Lewis, and J. J. Cullen (2002), Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient, Limnology and Oceanography, 47(2), 404–417. 4. Cullen, J. J. (1990), On models of growth and photosynthesis in phytoplankton, Deep-Sea Research, 37, 667–683., Cullen, J. J. (1990), On models of growth and photosynthesis in phytoplankton, Deep-Sea Research, 37, 667–683. 5. Demidov, A. N., S. A. Myslenkov, V. A. Gritsenko, V. Ya. Sultanov, M. N. Pisareva, K. P. Silvestrova, and A. A. Polukhin (2011), Specific features of water structure and dynamics within the coastal part of the Baltic Sea near the Sambian Peninsula, Moscow University Bulletin. Series 5, Geography, 1, 41–47 (in Russian), EDN: OIPRSH., Demidov, A. N., S. A. Myslenkov, V. A. Gritsenko, V. Ya. Sultanov, M. N. Pisareva, K. P. Silvestrova, and A. A. Polukhin (2011), Specific features of water structure and dynamics within the coastal part of the Baltic Sea near the Sambian Peninsula, Moscow University Bulletin. Series 5, Geography, 1, 41–47 (in Russian), EDN: OIPRSH.
|
|