Study of the Impact of Climatic Changes in 1980–2021 on Railway Infrastructure in the Central and Western Russian Arctic Based on Advanced Electronic Atlas of Hydrometeorological Parameters (Version 2, 2023)

Author:

Gvishiani Alexei12,Rozenberg Igor'3ORCID,Soloviev Anatoly45ORCID,Krasnoperov Roman6ORCID,Shevaldysheva Olga67ORCID,Kostianoy Andrey8,Lebedev Sergey1910ORCID,Dubchak Irina11,Sazonov Nikolay12,Nikitina Isabella1,Gvozdik Sofia13,Sergeev Vladimir6ORCID,Gvozdik Georgy67ORCID

Affiliation:

1. Geophysical Center of Russian Academy of Scineces

2. Schmidt Institute of Physics of the Earth, RAS

3. Russian University of Transport (MIIT)

4. Geophysical Center RAS

5. Schmidt institute of physics of the Earth of the Russian academy of sciences

6. Geofizicheskiy centr RAN

7. Moskovskiy gosudarstvennyy universitet imeni M. V. Lomonosova

8. P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Immanuel Kant Baltic Federal University

9. Maikop State Technological University

10. National Research University of Electronic Technology

11. Rossiyskiy universitet transporta

12. Nauchno-issledovatel'skiy i proektno-konstruktorskiy institut informatizacii, avtomatizacii i svyazi na zheleznodorozhnom transporte

13. GC RAS

Abstract

Arctic zone of the Russian Federation (AZRF) is the region of intensive economic development. In this regard, it is critical to give an adequate assessment of natural factors that may have a negative impact on the growing technological infrastructure. Rapid climate change effects show a significant influence on this activity, including the railway network development. Hence, the decision-making community requires relevant information on climatic variations that can put at hazard the construction and operation of railway facilities. This paper presents the analysis of climatic changes within the region of Central and Western Russian Arctic in 1980–2021. It was performed using the new electronic Atlas of climatic variations in main hydrometeorological parameters, created for the Russian Railways in 2023. This geoinformatic product includes about 400 digital maps reflecting the variability of seven climatic parameters over more than four decades within the studied region. These parameters are air temperature, total precipitation, wind speed, soil temperature, soil moisture content, air humidity, and snow cover thickness. The analysis of climatic maps and their comparison between selected periods showed spatial and temporal heterogeneity of climatic variations in this region. This justifies the feasibility of further research using additional analytical instruments, such as Hovmöller diagrams, time series graphs, etc. The implementation of advanced geoinformatic products in the practice of the Russian Railways will facilitate sustainable development of its infrastructure in rapidly altering climatic conditions.

Publisher

Geophysical Center of the Russian Academy of Sciences

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. 2023–2024 European windstorm season (2023), Wikipedia. The Free Encyclopedia, https://en.wikipedia.org/wiki/2023-24_European_windstorm_season, (visited on 09.11.2023)., 2023–2024 European windstorm season (2023), Wikipedia. The Free Encyclopedia, https://en.wikipedia.org/wiki/2023-24_European_windstorm_season, (visited on 09.11.2023).

2. AMAP (2021), Arctic Climate Change Update 2021: Key Trends and Impacts, Summary for Policy-Makers, 16 pp., Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway., AMAP (2021), Arctic Climate Change Update 2021: Key Trends and Impacts, Summary for Policy-Makers, 16 pp., Arctic Monitoring and Assessment Programme (AMAP), Tromsø, Norway.

3. Andersson, E., J. Häggström, M. Sima, and S. Stichel (2004), Assessment of train-overturning risk due to strong crosswinds, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218(3), 213–223, https://doi.org/10.1243/0954409042389382., Andersson, E., J. Häggström, M. Sima, and S. Stichel (2004), Assessment of train-overturning risk due to strong crosswinds, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 218(3), 213–223, https://doi.org/10.1243/0954409042389382.

4. Baker, C. J., J. Jones, F. Lopez-Calleja, and J. Munday (2004), Measurements of the cross wind forces on trains, Journal of Wind Engineering and Industrial Aerodynamics, 92(7–8), 547–563, https://doi.org/10.1016/j.jweia.2004.03.002., Baker, C. J., J. Jones, F. Lopez-Calleja, and J. Munday (2004), Measurements of the cross wind forces on trains, Journal of Wind Engineering and Industrial Aerodynamics, 92(7–8), 547–563, https://doi.org/10.1016/j.jweia.2004.03.002.

5. Baker, C. J., L. Chapman, A. Quinn, and K. Dobney (2009), Climate change and the railway industry: A review, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(3), 519–528, https://doi.org/10.1243/09544062JMES1558., Baker, C. J., L. Chapman, A. Quinn, and K. Dobney (2009), Climate change and the railway industry: A review, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(3), 519–528, https://doi.org/10.1243/09544062JMES1558.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3