CAMK2G is identified as a novel therapeutic target for myelofibrosis

Author:

Miyauchi Masashi1,Sasaki Ken2,Kagoya Yuki3,Taoka Kazuki4,Masamoto Yosuke5,Yamazaki Sho6,Arai Shunya7ORCID,Mizuno Hideaki7,Kurokawa Mineo8ORCID

Affiliation:

1. Graduate School of Medicine, The University of Tokyo, Bunkyo-City, Japan

2. University of Tokyo, Tokyo, Japan

3. Aichi Cancer Center Research Institute, Nagoya, Japan

4. Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

5. The University of Tokyo Hospital, Tokyo, Japan

6. Graduate School of Medicine, The University of Tokyo

7. Graduate School of Medicine, University of Tokyo, Tokyo, Japan

8. The University of Tokyo, Bunkyo-Ku, Tokyo, Japan

Abstract

Although JAK1/2 inhibition is effective into alleviating symptoms of myelofibrosis (MF), it does not result in the eradication of MF clones, which can lead to inhibitor-resistant clones emerging during the treatment. Here we established iPS cells derived from MF patient samples (MF-iPSCs) harboring JAK2 V617F, CALR type 1, or CALR type 2 mutations. We demonstrated that these cells faithfully recapitulate the drug sensitivity of the disease. These cells were utilized for chemical screening and calcium/calmodulin-dependent protein kinase 2 (CAMK2) was identified as a promising therapeutic target. MF model cells and mice induced by MPL W515L, another type of mutations recurrently detected in MF patients were used to elucidate the therapeutic potential of CAMK2 inhibition. CAMK2 inhibition was effective against JAK2 inhibitor-sensitive and JAK2 inhibitor-resistant cells. Further research revealed CAMK2 gamma subtype was important in MF model cells induced by MPL W515L. We showed that CAMK2G hetero knockout in the primary bone marrow cells expressing MPL W515Ldecreased colony-forming capacity. CAMK2G inhibition with berbamine, a CAMK2G inhibitor, significantly prolonged survival and reduced disease phenotypes such as splenomegaly and leukocytosis in a MF mouse model induced by MPL W515L. We investigated the molecular mechanisms underlying the therapeutic effect of CAMK2G inhibition and found that CAMK2G is activated by MPL signaling in MF model cells and is an effector in the MPL-JAK2 signaling pathway in these cells. These results indicate CAMK2G plays an important role in MF, and CAMK2G inhibition may be a novel therapeutic strategy that overcomes resistance to JAK1/2 inhibition.

Publisher

American Society of Hematology

Subject

Hematology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3