Regulation of granulocyte-macrophage colony-stimulating factor and E- selectin expression in endothelial cells by cyclosporin A and the T- cell transcription factor NFAT

Author:

Cockerill GW1,Bert AG1,Ryan GR1,Gamble JR1,Vadas MA1,Cockerill PN1

Affiliation:

1. Division of Human Immunology, Hanson Centre For Cancer Research, Adelaide, Australia.

Abstract

Nuclear factor of activated T cells (NFAT) was originally described as a T-cell-specific transcription factor athat supported the activation of cytokine gene expression and mediated the immunoregulatory effects of cyclosporin A (CsA). As we observed that activated endothelial cells also expressed NFAT, we tested the antiinflammatory properties of CsA in endothelial cells. Significantly, CsA completely suppressed the induction of NFAT in endothelial cells and inhibited the activity of granulocyte-macrophage colony-stimulating factor (GM-CSF) gene regulatory elements that use NFAT by 60%. CsA similarly mediated a reduction of up to 65% in GM-CSF mRNA and protein expression in activated endothelial cells. CsA also suppressed E-selectin, but not vascular cell adhesion molecule-1 (VCAM-1) expression in endothelial cells, even though the E-selectin promoter is activated by NF-kappa B rather than NFAT. Hence, induction of cell surface expression of this leukocyte adhesion molecule by tumor necrosis factor (TNF)-alpha was reduced by 40% in the presence of CsA, and this was reflected by a 29% decrease in neutrophil adhesion. The effects of CsA on endothelial cells were also detected at the chromatin structure level, as DNasel hypersensitive sites within both the GM-CSF enhancer and the E-selectin promoter were suppressed by CsA. This represents the first report of NFAT in endothelial cells and suggests mechanisms by which CsA could function as an antiinflammatory agent.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3