Fibrinogen mediates leukocyte-endothelium bridging in vivo at low shear forces

Author:

Sriramarao P1,Languino LR1,Altieri DC1

Affiliation:

1. Laboratory of Immunology and Vascular Biology, La Jolla Institute for Experimental Medicine, CA, USA.

Abstract

In addition to preserving hemostasis, fibrinogen assembly on leukocytes mediates inflammatory responses and may aberrantly contribute to vascular injury. In this study, we used real-time intravital video microscopy in exposed rabbit mesentery to investigate the potential role of fibrinogen on leukocyte adherence mechanisms, in vivo. At physiologic concentrations of 0.15 to 0.5 mg/mL, human fibrinogen dose-dependently enhanced by threefold to fivefold the adhesion of chemoattractant-stimulated monocytic HL-60 cells to rabbit mesenteric endothelium, by acting as a bridging molecule between the two types. Fibrinogen-dependent intercellular bridging occurred in venules, but not in arterioles or capillaries (1), was optimal at reduced flow shear forces (range: 0.77 to 2.79 dyne/cm2) (2), and produced a firm attachment of monocytic cells to endothelium, rather than transient rolling (3). Consistent with this model, rabbit fibrinogen failed to support human leukocyte adhesion, while human fibrinogen enhanced monocytic cell attachment to rabbit endothelial cells in vitro, in a reaction indistinguishable from that observed with human endothelium. Antagonists of the recently described association of fibrinogen with intercellular adhesion molecule-1 (ICAM-1), including monoclonal antibodies (MoAbs) LB-2 or 2D5, or the fibrinogen gamma 3 peptide gamma Asn117-Ala133, blocked fibrinogen-dependent leukocyte-endothelium interaction in vitro or in vivo, respectively, while a control nonbinding antibody or the fibrinogen L10 peptide gamma Leu402-Val411 were ineffective. These data suggest that simultaneous assembly of fibrinogen on leukocytes and endothelial ICAM-1 provides a pathway of intercellular adhesion which may act in concert with beta 2 integrins to stabilize firm leukocyte attachment to endothelium, in vivo. Given the recognized role of fibrinogen as a major risk factor for atherosclerosis, this mechanism may directly contribute to thrombus formation and endothelial cell damage in vascular diseases.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3