Shear stress enhances the proteolysis of von Willebrand factor in normal plasma

Author:

Tsai HM1,Sussman II1,Nagel RL1

Affiliation:

1. Division of Hematology, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10467.

Abstract

Abstract While von Willebrand factor (vWF) is secreted from endothelial cells as a very large polymer, it circulates as a series of multimers that are reducible to a 225-kD polypeptide and three proteolytic fragments of 189, 176, and 140 kD. Cleavage at the Tyr-842/Met-843 bond of the vWF polypeptide creates the 140- and 176-kD fragments. In the process of understanding vWF multimer formation, the role of shear stress in vWF proteolysis was investigated in this study. A shear-rate-dependent loss of the largest multimers was observed when normal plasma was perfused through long capillary tubings achieving shear rates normally encountered in the circulation. The shear-dependent vWF change was not observed when purified vWF or normal plasma containing calcium chelator EGTA or EDTA was perfused. As the large multimers decreased, an increase in the smaller multimers, including 200- and 350-kD bands, was detected. Elution and immunoblotting studies with peptide-specific antibodies LJ-7745 and VP-1 showed that the 200-kD band was a dimer of the 140-kD fragment, whereas the 350-kD band was a dimer of the 176-kD fragment. When analyzed after disulfide bonds were reduced, sheared plasma showed an increase in the 176- and 140-kD fragments, but not the 189-kD fragment. Finally, shearing of purified vWF enhanced its proteolytic cleavage when it was subsequently incubated with the cryosupernatant fraction of normal plasma or with cathepsin G, a leukocyte granule serine protease. These results show that shear stress is capable of enhancing the susceptibility of vWF to proteolytic cleavage. It promotes vWF proteolysis in normal plasma at a site that generates the 140-kD/176-kD fragments, leading to a decrease in multimer size. Shear stress might be involved in modulating the size of vWF in the circulation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3