Affiliation:
1. Shanghai Institute of Hematology, Rui-Jin Hospital, Department of Biophysics, Shanghai Second Medical University, P.R. China.
Abstract
Abstract
It has been shown recently in China that arsenic trioxide (As2O3) is a very effective treatment for acute promyelocytic leukemia (APL). APL patients resistant to all-trans retinoic acid (ATRA) and conventional chemotherapy can still respond to AS2O3. In this study, we addressed the possible cellular and molecular mechanisms of this treatment by using NB4 cells as a model. The results show that: (1) As2O3 triggers relatively specific NB4 cell apoptosis at micromolar concentration, as proved by morphology, histogramic related nuclear DNA contents, and DNA gel eletrophoresis. (2) As2O3 does not influence bax, bcl-x, c-myc, and p53 gene expression, but downregulates bcl-2 gene expression at both mRNA and protein levels. (3) As2O3 induces a significant modulation of the PML staining pattern in NB4 cells and HL-60 cells. The micropunctates characteristic of PML-RAR alpha in NB4 cells dissappear after treatment with As2O3, whereas a diffuse PML staining occurs in the perinuclear cytoplasmic region. In addition, a low percentage of untreated NB4 cells exhibits an accumulation of PML positive particles in a compartment of cytoplasm. The percentage of these cells can be significantly increased after As2O3 treatment. A similar PML staining pattern is observed in apoptotic cells. (4) ATRA pretreatment does not influence As2O3-induced apoptosis. These results suggest that induction of cell apoptosis can be one of the mechanisms of the therapeutic effect of As2O3. Moreover, this apoptosis induction occurs independently of the retinoid pathway and may be mediated, at least partly, through the modulation of bcl-2, as well as PML-RAR alpha and/ or PML proteins.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
603 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献