Molecular basis of the enhanced susceptibility of the erythrocytes of paroxysmal nocturnal hemoglobinuria to hemolysis in acidified serum

Author:

Wilcox LA1,Ezzell JL1,Bernshaw NJ1,Parker CJ1

Affiliation:

1. Department of Medicine, University of Utah School of Medicine, Salt Lake City.

Abstract

Abstract When incubated in acidified serum, the erythrocytes of paroxysmal nocturnal hemoglobinuria (PNH) are hemolyzed through activation of the alternative pathway of complement (APC), but normal erythrocytes are resistant to this process. PNH cells are deficient in decay- accelerating factor (DAF), a complement regulatory protein that inhibits the activity of both the classical and the alternative pathways. However, deficiency of DAF alone does not account entirely for the aberrant effects of acidified serum on PNH cells. Recently, we have shown that PNH erythrocytes are also deficient in another complement control protein called membrane inhibitor of reactive lysis (MIRL) that restricts complement-mediated lysis by blocking formation of the membrane attack complex (MAC). To determine the effects of the DAF and MIRL on susceptibility to acidified serum lysis, PNH cells were repleted with the purified proteins. DAF partially inhibited acidified serum lysis by blocking the activity of the amplification C3 convertase. MIRL inhibited acidified serum lysis both by blocking the activity of the MAC and by inhibiting the activity the C3 convertase. When DAF function was blocked with antibody, normal erythrocytes became partially susceptible to acidified serum lysis. By blocking MIRL, cells were made completely susceptible to lysis, and control of C3 convertase activity was partially lost. When both DAF and MIRL were blocked, the capacity of normal erythrocytes to control the activity of the APC and the MAC was destroyed, and the cells hemolyzed even in unacidified serum. These studies demonstrate that DAF and MIRL act in concert to control susceptibility to acidified serum lysis; of the two proteins, MIRL is the more important. In addition to its regulatory effects on the MAC, MIRL also influences the activity of the C3 convertase of the APC. Further, in the absence of DAF and MIRL, the plasma regulators (factor H and factor I) lack the capacity to control membrane- associated activation of the APC.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3