Correction of the platelet adhesion defect in delta-storage pool deficiency at elevated hematocrit--possible role of adenosine diphosphate

Author:

Weiss HJ1,Lages B1,Hoffmann T1,Turitto VT1

Affiliation:

1. Department of Medicine, St. Luke's-Roosevelt Hospital Center, New York, NY 10019, USA.

Abstract

Previous studies on patients with storage pool deficiency (SPD) who are specifically deficient in platelet dense granules (delta-SPD) have suggested a role for dense granule substances, in all likelihood adenosine diphosphate (ADP), in mediating thrombus formation on subendothelium at high shear rates. The role of dense granule substances in mediating platelet adhesion appears to be more complicated Previous studies in delta-SPD suggested an adhesion defect that was strongly influenced by the patient's hematocrit (Hct) value. To explore further the possibility that red blood cells (RBCs) may influence the role that platelet storage granules play in mediating adhesion at high shear rates, we have measured adhesion (and thrombus formation) throughout a preselected range of Hct values (30% to 60%) in normal subjects and in patients with delta-SPD. The present studies confirm the defect in platelet adhesion in patients with delta-SPD, most significantly at Hct values of 30% to 40%. This defect (but not that of thrombus formation) can be completely corrected by the addition of RBCs. The correction of the platelet adhesion defect by RBCs was specific for delta-SPD; it was not observed in either von Willebrand's disease or thrombasthenia. Studies performed on normal blood under conditions that could be expected to block any effect of ADP on adhesion and an analysis of the type of adhesion defect in delta-SPD suggest that ADP may be involved in the process required for platelet spreading on the subendothelium. The corrective effect of RBCs on platelet adhesion in delta-SPD appears to be chemical rather than physical in nature, possibly due to shear-induced release of RBC ADP or to other recently described properties of RBCs that enhance collagen- induced platelet interactions.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3