Loss of the B-lineage–specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma

Author:

Schwering Ines1,Bräuninger Andreas1,Klein Ulf1,Jungnickel Berit1,Tinguely Marianne1,Diehl Volker1,Hansmann Martin-Leo1,Dalla-Favera Riccardo1,Rajewsky Klaus1,Küppers Ralf1

Affiliation:

1. From the Institute for Genetics and the Department of Internal Medicine I, University of Cologne, Germany; Department of Pathology, University of Frankfurt, Frankfurt/Main, Germany; and the Institute of Cancer Genetics, Columbia University, New York, NY.

Abstract

Hodgkin and Reed-Sternberg (HRS) cells represent the malignant cells in classical Hodgkin lymphoma (HL). Because their immunophenotype cannot be attributed to any normal cell of the hematopoietic lineage, the origin of HRS cells has been controversially discussed, but molecular studies established their derivation from germinal center B cells. In this study, gene expression profiles generated by serial analysis of gene expression (SAGE) and DNA chip microarrays from HL cell lines were compared with those of normal B-cell subsets, focusing here on the expression of B-lineage markers. This analysis revealed decreased mRNA levels for nearly all established B-lineage–specific genes. For 9 of these genes, lack of protein expression was histochemically confirmed. Down-regulation of genes affected multiple components of signaling pathways active in B cells, including B-cell receptor (BCR) signaling. Because several genes down-regulated in HRS cells are positively regulated by the transcriptional activator Pax-5, which is expressed in most HRS cells, we studied HL cell lines for mutations in the Pax-5gene. However, no mutations were found. We propose that the lost B-lineage identity in HRS cells may explain their survival without BCR expression and reflect a fundamental defect in maintaining the B-cell differentiation state in HRS cells, which is likely caused by a novel, yet unknown, pathogenic mechanism.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 323 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3