MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes

Author:

Vogl Thomas1,Ludwig Stephan1,Goebeler Matthias1,Strey Anke1,Thorey Irmgard S.1,Reichelt Rudolf1,Foell Dirk1,Gerke Volker1,Manitz Marie P.1,Nacken Wolfgang1,Werner Sabine1,Sorg Clemens1,Roth Johannes1

Affiliation:

1. From the Institute of Experimental Dermatology, Department of Pediatrics, and Institute of Molecular Virology, University of Münster, Germany; Department of Dermatology, University of Würzburg, Germany; Institute of Medical Biochemistry, University of Münster, Germany; Institute of Cell Biology, ETH Zürich, Switzerland; and Institute of Medical Physics and Biophysics, University of Münster, Germany.

Abstract

AbstractMRP14 (S100A9) is the major calcium-binding protein of neutrophils and monocytes. Targeted gene disruption reveals an essential role of this S100 protein for transendothelial migration of phagocytes. The underlying molecular mechanism comprises major alterations of cytoskeletal metabolism. MRP14, in complex with its binding partner MRP8 (S100A8), promotes polymerization of microtubules. MRP14 is specifically phosphorylated by p38 mitogen-activated protein kinase (MAPK). This phosphorylation inhibits MRP8/MRP14-induced tubulin polymerization. Phosphorylation of MRP14 is antagonistically regulated by binding of MRP8 and calcium. The biologic relevance of these findings is confirmed by the fact that MAPK p38 fails to stimulate migration of MRP14-/- granulocytes in vitro and MRP14-/- mice show a diminished recruitment of granulocytes into the granulation tissue during wound healing in vivo. MRP14-/- granulocytes contain significantly less polymerized tubulin, which subsequently results in minor activation of Rac1 and Cdc42 after stimulation of p38 MAPK. Thus, the complex of MRP8/MRP14 is the first characterized molecular target integrating MAPK- and calcium-dependent signals during migration of phagocytes.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3