Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells

Author:

Brenchley Jason M.1,Karandikar Nitin J.1,Betts Michael R.1,Ambrozak David R.1,Hill Brenna J.1,Crotty Laura E.1,Casazza Joseph P.1,Kuruppu Janaki1,Migueles Stephen A.1,Connors Mark1,Roederer Mario1,Douek Daniel C.1,Koup Richard A.1

Affiliation:

1. From the Vaccine Research Center and the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), and the Experimental Transplantation and Immunology Branch, NCI, NIH, Bethesda, MD; and the Departments of Pathology and Neurology, University of Texas, Southwestern Medical Center, Dallas.

Abstract

Virus-specific CD8+ T-cell responses play a pivotal role in limiting viral replication. Alterations in these responses, such as decreased cytolytic function, inappropriate maturation, and limited proliferative ability could reduce their ability to control viral replication. Here, we report on the capacity of HIV-specific CD8+ T cells to secrete cytokines and proliferate in response to HIV antigen stimulation. We find that a large proportion of HIV-specific CD8+ T cells that produce cytokines in response to cognate antigen are unable to divide and die during a 48-hour in vitro culture. This lack of proliferative ability of HIV-specific CD8+ T cells is defined by surface expression of CD57 but not by absence of CD28 or CCR7. This inability to proliferate in response to antigen cannot be overcome by exogenous interleukin-2 (IL-2) or IL-15. Furthermore, CD57 expression on CD8+ T cells, CD4+ T cells, and NK cells is a general marker of proliferative inability, a history of more cell divisions, and short telomeres. We suggest, therefore, that the increase in CD57+ HIV-specific CD8+ T cells results from chronic antigen stimulation that is a hallmark of HIV infection. Thus, our studies define a phenotype associated with replicative senescence in HIV-specific CD8+ T cells, which may have broad implications to other conditions associated with chronic antigenic stimulation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3