Affiliation:
1. From the Center for Molecular and Vascular Biology and the Laboratory of Morphology and Molecular Pathology, University of Leuven, Belgium; and the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, the Netherlands.
Abstract
AbstractWe have generated transgenic mice overexpressing the human P2X1 ion channel in the megakaryocytic cell lineage. Platelets from transgenic mice exhibited a gain of P2X1ionotropic activity as determined by more prominent P2X1-mediated Ca2+ influx and platelet shape change. P2X1 overexpression enhanced platelet secretion and aggregation evoked by low doses of collagen, convulxin, or the thromboxane A2 mimetic U46619. In contrast, transgenic platelet responses to adenosine diphosphate (ADP) or thrombin were normal. Perfusing whole blood from transgenic mice over collagen fibers at a shear rate of 1000 seconds−1 resulted in increased P2X1-dependent aggregate formation and phosphatidylserine exposure. Platelet hyperreactivity to collagen was correlated with up-regulated extracellular signal-regulated kinase 2 (ERK2) phosphorylation. Accordingly, the MEK1/2 inhibitor U0126 potently inhibited the collagen-induced aggregation of transgenic platelets when stirred or when perfused over a collagen surface. In a viscometer, shear stress caused potent aggregation of transgenic platelets under conditions in which wild-type platelets did not aggregate. In an in vivo model of thromboembolism consisting of intravenous injection of a low dose of collagen plus epinephrine, transgenic mice died more readily than wild-type mice. Preinjection of U0126 not only fully protected transgenic mice against thrombosis, it also enhanced the survival of wild-type mice injected with a higher collagen dose. Hence, the platelet P2X1 ion channel plays a role in hemostasis and thrombosis through its participation in collagen-, thromboxane A2-, and shear stress–triggered platelet responses. Activation of the ERK2 pathway is instrumental in these processes.
Publisher
American Society of Hematology
Subject
Cell Biology,Hematology,Immunology,Biochemistry
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献