Apoptosis induced by JAK2 inhibition is mediated by Bim and enhanced by the BH3 mimetic ABT-737 in JAK2 mutant human erythroid cells

Author:

Will Britta12,Siddiqi Tanya1,Jordà Meritxell Alberich13,Shimamura Takeshi4,Luptakova Katarina1,Staber Philipp B.15,Costa Daniel B.1,Steidl Ulrich2,Tenen Daniel G.36,Kobayashi Susumu1

Affiliation:

1. Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA;

2. Department of Cell Biology, Albert Einstein College of Medicine, and Albert Einstein Cancer Center, Bronx, NY;

3. Center for Life Sciences and Harvard Stem Cell Institute and

4. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA;

5. Division of Hematology, Medical University Graz, Graz, Austria; and

6. Cancer Science Institute, National University of Singapore, Singapore

Abstract

AbstractThe activating mutation JAK2 V617F plays a central role in the pathogenesis of polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Inhibition of JAK2 activity leads to growth inhibition and apoptosis in cells with mutated JAK2. However, the proapoptotic proteins involved in JAK2 inhibition-induced apoptosis remain unclear. In this study, we show that JAK2 inhibition-induced apoptosis correlated with up-regulation of the nonphosphorylated form of the BH3-only protein Bim in hematopoietic cell lines bearing JAK2 mutations. Knockdown of Bim dramatically inhibited apoptosis induced by JAK2 inhibition, which was reversed by the BH3 mimetic agent ABT-737. In addition, ABT-737 enhanced the apoptosis induced by JAK2 inhibition in JAK2 V617F+ HEL and SET-2 cells. The combination of JAK inhibitor I and ABT-737 reduced the number of erythroid colonies derived from CD34+ cells isolated from JAK2 V617F+ polycythemia vera patients more efficiently than either drug alone. These data suggest that Bim is a key effector molecule in JAK2 inhibition-induced apoptosis and that targeting this apoptotic pathway could be a novel therapeutic strategy for patients with activating JAK2 mutations.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3