Preclinical Evaluation of Prgn-3007, a Non-Viral, Multigenic, Autologous ROR1 Ultracar-T ® Therapy with Novel Mechanism of Intrinsic PD-1 Blockade for Treatment of Hematological and Solid Cancers

Author:

Chan Tim1,Scott Sean P1,Du Mengyan1,Bolinger Cheryl1,Poortman Carol1,Shepard Lindsey1,Koenitzer Byron1,Govekung Adeline1,Sailor Carlos1,Johnson Rahim1,Plummer Jacques1,Zilko Steven1,Dutta Shourik1,Kunchithapautham Kannan1,Athwal Taranjit1,Klocke Bernward1,Zinser Christian1,Abdeladhim Maha1,Ahmad Shamim1,Metenou Simon1,Semnani Roshanak1,Brough Douglas E1,Shah Rutul R1,Sabzevari Helen1

Affiliation:

1. Precigen, Inc, Germantown, MD

Abstract

Abstract Traditional methods for chimeric antigen receptor (CAR) T manufacturing utilize viral vectors, ex vivo activation and expansion of T cells to achieve clinically relevant cell numbers, which leads to an exhausted T cell phenotype, high manufacturing costs, and treatment delays. The UltraCAR-T platform is designed to overcome these limitations using our advanced non-viral gene delivery system and a rapid, overnight manufacturing process (Blood 2019 134 (Supplement_1):2660; Blood 2020 136 (Supplement 1):17); Cancer Research 2020 80 (16Suppl):6593). UltraCAR-T cells, which express antigen specific CAR, membrane-bound IL-15 (mbIL15), and kill switch genes, are manufactured at the medical center's cGMP facility using autologous T cells and administered back to the patient only one day after gene transfer. UltraCAR-T cells are currently under clinical investigation for hematological (NCT03927261) and solid tumors (NCT03907527). Here we describe the advancement of the UltraCAR-T platform to address the inhibitory tumor microenvironment by incorporating intrinsic checkpoint blockade without the need for complex and expensive gene editing techniques. PRGN-3007, based on the next generation of the UltraCAR-T platform, is engineered to simultaneously express CAR for targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is overexpressed on many hematological and solid tumors; mbIL15 for enhanced in vivo expansion and persistence; kill switch for improved safety profile; and a novel mechanism for the intrinsic blockade of PD-1 gene expression. This approach of intrinsic blockade of PD-1 expression, only on UltraCAR-T cells, is aimed to avoid systemic toxicity and high cost of checkpoint inhibitors by eliminating the need for combination treatment. PRGN-3007 is manufactured using the already established rapid and streamlined UltraCAR-T manufacturing process. PRGN-3007 was generated using multiple healthy donor T cells using multi-cistronic non-viral vector and the overnight manufacturing process. The co-expression of CAR, mbIL15 and kill switch transgenes was confirmed by flow cytometry, western blotting, and qPCR. Furthermore, PRGN-3007 showed significant reduction in PD-1 expression on UltraCAR-T cells compared to ROR1 CAR-T cells lacking PD-1 blockade (Control ROR1 CAR-T). The downregulation of PD-1 expression on PRGN-3007 resulted in enhanced ROR1-specific cytotoxicity and release of inflammatory cytokines upon co-culture with various ROR1 + PD-L1 + hematological and solid tumor cells compared to Control ROR1 CAR-T, especially at low effector to target cell ratios. Single-cell cytokine proteomics showed that the downregulation of PD-1 expression on PRGN-3007 resulted in a significantly higher number of polyfunctional CAR-T cells compared to Control ROR1 CAR-T. Expression of mbIL15 on UltraCAR-T, with or without downregulation of PD-1 expression, resulted in robust expansion in presence of ROR1 antigen, lack of autonomous expansion in absence of ROR1, and durable persistence even in absence of exogenous cytokines in vitro. Furthermore, PRGN-3007 was selectively and effectively eliminated by the kill switch activator antibody treatment. A single administration of PRGN-3007, only one day after gene transfer, effectively reduced tumor burden and significantly improved overall survival (p<0.05) of tumor bearing mice compared to Control ROR1 CAR-T in an aggressive xenograft model of mantle cell lymphoma (Figure). Blood analyses demonstrated sustained downregulation of PD-1 expression, rapid expansion, long-term persistence, and a predominant central memory phenotype of PRGN-3007 in tumor bearing mice. In summary, these preclinical data highlight the overall safety and improved efficacy of incorporating intrinsic downregulation of PD-1 expression on UltraCAR-T cells using non-viral gene delivery and the established rapid, decentralized manufacturing process. These data provide a strong rationale for the evaluation of PRGN-3007 for the treatment of ROR1 + malignancies. Figure: Overall survival in in an established model of mantle cell lymphoma in NSG mice. Tumor cells were engrafted in mice on Day 0 and treatments were administered on Day 8. Data shown is from 8 mice/group at the start of the study. * p<0.05, ***p<0.001; log rank test. Figure 1 Figure 1. Disclosures Chan: Precigen, Inc: Current Employment, Current equity holder in publicly-traded company. Scott: Precigen, Inc: Current Employment. Du: Precigen, Inc: Current Employment. Bolinger: Precigen, Inc: Current Employment. Poortman: Precigen, Inc: Current Employment. Shepard: Precigen, Inc: Current Employment. Koenitzer: Precigen, Inc: Current Employment. Govekung: Precigen, Inc: Current Employment. Sailor: Precigen, Inc: Current Employment. Johnson: Precigen, Inc: Current Employment. Plummer: Precigen, Inc: Current Employment. Zilko: Precigen, Inc: Current Employment. Dutta: Precigen, Inc: Current Employment. Kunchithapautham: Precigen, Inc: Current Employment. Athwal: Precigen, Inc: Current Employment. Klocke: Precigen, Inc: Current Employment. Zinser: Precigen, Inc: Current Employment. Abdeladhim: Precigen, Inc: Current Employment. Ahmad: Precigen, Inc: Current Employment; Kite, A Gilead Company: Ended employment in the past 24 months. Metenou: Precigen, Inc: Current Employment. Semnani: Precigen, Inc: Current Employment. Brough: Precigen, Inc: Current Employment, Current equity holder in publicly-traded company. Shah: Precigen: Current Employment, Current equity holder in publicly-traded company. Sabzevari: Precigen: Current Employment, Current equity holder in publicly-traded company; Kinnate BioPharma: Membership on an entity's Board of Directors or advisory committees; Compass Therapeutics: Current equity holder in publicly-traded company.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3