Persistence of naive CD45RA+ regulatory T cells in adult life

Author:

Seddiki Nabila1,Santner-Nanan Brigitte1,Tangye Stuart G.1,Alexander Stephen I.1,Solomon Michael1,Lee Soon1,Nanan Ralph1,de Saint Groth Barbara Fazekas1

Affiliation:

1. From the Centenary Institute of Cancer Medicine and Cell Biology, Faculty of Medicine, University of Sydney, NSW, Australia; Department of Pediatrics, University of Sydney, Western Clinical School, Penrith, NSW, Australia; The Childrens Hospital at Westmead, NSW, Australia; and the Departments of Gastroenterology and Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.

Abstract

AbstractRegulatory T cells (TREGs) constitutively expressing CD4, CD25, and the transcription factor Foxp3 can prevent a wide range of experimental and spontaneous autoimmune diseases in mice. In humans, CD4+CD25bright T cells, predominantly within the CD45RO+ activated/memory subset in adults and the CD45RA+ naive T-cell subset in infants, are considered to be the equivalent subset. Using novel combinations of monoclonal antibodies (mAbs), we examined expression of CD25 in human infant thymus, cord blood, adult peripheral blood, lymph node, and spleen. In addition to the CD4+CD25bright T cells, subfractionation on the basis of CD45 splice variants indicated that all samples contained a second distinct population of cells expressing a slightly lower level of CD25. In adult peripheral blood, this population expressed a naive CD45RA+ phenotype. The corresponding population in lymph node, spleen, and cord blood showed some evidence of activation, and expressed markers characteristic of TREGs, such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). Sorted CD4+CD25+CD45RA+ T cells from both cord and adult blood expressed very high levels of mRNA for Foxp3 and manifested equivalent suppressive activity in vitro, indicating that they are bone fide members of the regulatory T-cell lineage. Targeting naive TREGs in adults may offer new means of preventing and treating autoimmune disease.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 238 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3