Altered granulopoietic profile and exaggerated acute neutrophilic inflammation in mice with targeted deficiency in the sialyltransferase ST6Gal I

Author:

Nasirikenari Mehrab1,Segal Brahm H.1,Ostberg Julie R.1,Urbasic Ashlee1,Lau Joseph T.1

Affiliation:

1. From the Departments of Molecular and Cellular Biology, Medicine, and Immunology, Roswell Park Cancer Institute, Buffalo, NY; and the Department of Pathobiology, University of Illinois at Urbana-Champaign.

Abstract

AbstractElevation of serum sialic acid and the ST6Gal-1 sialyltransferase is part of the hepatic system inflammatory response, but the contribution of ST6Gal-1 has remained unclear. Hepatic ST6Gal-1 elevation is mediated by P1, 1 of 6 promoters regulating the ST6Gal1 gene. We report that the P1-ablated mouse, Siat1ΔP1, and a globally ST6Gal-1–deficient mouse had significantly increased peritoneal leukocytosis after intraperitoneal challenge with thioglycollate. Exaggerated peritonitis was accompanied by only a modest increase in neutrophil viability, and transferred bone marrow–derived neutrophils from Siat1ΔP1 mice migrated to the peritonea of recipients with normal efficiency after thioglycollate challenge. Siat1ΔP1 mice exhibited 3-fold greater neutrophilia by thioglycollate, greater pools of epinephrine-releasable marginated neutrophils, greater sensitivity to G-CSF, elevated bone marrow CFU-G and proliferative-stage myeloid cells, and a more robust recovery from cyclophosphamide-induced myelosuppression. Bone marrow leukocytes from Siat1ΔP1 are indistinguishable from those of wild-type mice in α2,6-sialylation, as revealed by the Sambucus nigra lectin, and in the expression of total ST6Gal-1 mRNA. Together, our study demonstrated a role for ST6Gal-1, possibly from extramedullary sources (eg, produced in liver) in regulating inflammation, circulating neutrophil homeostasis, and replenishing granulocyte numbers.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3