CXCR4-Expressing Anti-CD25 CAR T-Cells Effectively Eliminate Human AML Cells In Vivo

Author:

Itoh-Nakadai Ari1,Saito Yoriko1,Murasawa-Tomizawa Mariko1,Kajita Hiroshi1,Matsumoto Takehisa2,Matsuda Masashi3,Watanabe Takashi4,Shirouzu Mikako2,Ohara Osamu54,Koseki Haruhiko3,Shultz Leonard6,Ishikawa Fumihiko1

Affiliation:

1. Laboratory for Human Disease Models, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan

2. RIKEN Systems and Structural Biology Center, Yokohama, Japan

3. Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan

4. Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan

5. Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan

6. The Jackson Laboratory, Bar Harbor, ME

Abstract

Chimeric antigen receptor (CAR) T-cells targeting CD19 has become a promising treatment option for relapsed/refractory B cell acute lymphoblastic leukemia and diffuse large B Cell lymphoma. For acute myeloid leukemia (AML), CAR T-cells targeting molecules such as CD33 and CD123 are under clinical evaluation. Regardless of target diseases or antigens, it is essential to understand mechanisms underlying both on- and off-target effects of CAR T-cells such as cytokine release syndrome. In the study, we aimed to develop a CAR T-cell treatment for poor prognosis AML. To this end, we analyzed gene expression of patient-derived AML-initiating cells with demonstrated capacity for in vivo AML development in a NOD/SCID/Il2rgKO (NSG) xenogeneic transplantation assay. CD25 (IL-2 receptor alpha chain), previously reported as a marker for poor prognosis in AML, was over-represented in AML-initiating cells as compared with normal CD34+CD38- hematopoietic stem/progenitor cells (HSPCs) (Saito et al., Science Translational Medicine 2010). In addition, the antigen is expressed in other hematologic malignancies such as CML, adult T cell leukemia/lymphoma, and Hodgkin's lymphoma. We therefore engineered lentiviral vector containing TCR sequence and Fab antigen recognition sites for human CD25 antigen. Following transduction of CD25-CAR lentiviral particles into cord blood-derived human T cells, we achieved in vitro CD25-CAR T-cell expansion to more than 2x107 cells. In vivo treatment of human AML patient-derived xenotransplantation (PDX) mice with 5x106 CD25-CAR (25CAR) T-cells (patient n=3, PDX n=3 for each patient) resulted in reduction of patient-derived leukemic cells in the peripheral blood (PB) of PDX mice, but abundant leukemic cells remained in the bone marrow (BM). To improve homing and targeting of AML cells in the BM, we engineered CAR construct with mouse CXCR4 expression (CXCR4-25CAR). Injection of 5x106 CXCR4-25CAR T-cells resulted in complete elimination of human AML cells in PB of PDX mice (0.0+/-0.0 hCD33+ cells/ml, n=3), while patient-derived AML cells remained in peripheral blood of PDX treated with 5x106 non-CXCR4-expressing 25CAR T-cells (1416.2+/-661.0 hCD33+ cells/ml PB, n=3) (Untreated PDX: 15677 hCD33+ cells/ml PB, n=1). At 4 weeks post-CAR T-cell injection, we found complete eradication of hCD33+ AML cells only in mice treated with CXCR4-25CAR T (CXCR4-25CAR T-cell treated: BM 0.0+/-0.0 cells, spleen 0.0+/-0.0 cells spleen, n=3; 25CAR T-cell treated: BM 1.9+/-0.4x107 cells, spleen 6.2+/-2.8x107 cells, n=3). In addition, histopathological examination demonstrated no xenogeneic GVHD in liver, lung, and intestine of the CXCR4 25 CAR-treated mice. In one CXCR4-25CAR T-cell-treated PDX mouse with longer-term observation, the number of CXCR4-25 CAR T-cells decreased and murine CD45+ hematopoietic cells increased in PB without evidence of AML relapse after 3 months (2 weeks post-injection: hCD33+AML 1040.3 +/-159.7 cells/ml, hCD3+T cells 474.7 +/-85.8 cells/ml, mouse CD45+ cells 751 +/-31.0 cells/ml, n=3; 3 months post-injection: hCD33+AML 0.0+/-0.0 cells/ml, hCD3+T cells 136.3 +/-77.6 cells/ml, mCD45+ cells 1864 +/-428 cells/ml, n=3). These findings indicate that elimination of human AML cells is mediated by specific targeting of CD25 by CAR T-cells. Injection of CXCR4-expressing CD25-CAR T-cells in NSG mice engrafted with normal CB CD34+CD38- HPSCs resulted in no change in the percentage of human CD3+Foxp3+ cells among PB CD4+ T cells (Pre-injection 10.5+/-1.4%, n=2; 4 weeks post-injection: 14.8+/-0.9% n=2). Additionally, CXCR4-25CAR did not affect to cell numbers of CD3+CD4+FoxP3+ cells, total CD3+ cells, CD19+ cells, CD33+ cells, and CD56+ cells in PB, BM, and spleen. CXCR4-expressing CD25-CAR T-cells is a promising treatment strategy for poor prognosis AML. Disclosures No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3