Immunoselection by natural killer cells of PIGA mutant cells missing stress-inducible ULBP

Author:

Hanaoka Nobuyoshi1,Kawaguchi Tatsuya1,Horikawa Kentaro1,Nagakura Shoichi1,Mitsuya Hiroaki1,Nakakuma Hideki1

Affiliation:

1. From the Departments of Hematology and Infectious Diseases, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan; Division of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan; and the Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan.

Abstract

AbstractThe mechanism by which paroxysmal nocturnal hemoglobinuria (PNH) clones expand is unknown. PNH clones harbor PIGA mutations and do not synthesize glycosylphosphatidylinositol (GPI), resulting in deficiency of GPI-linked membrane proteins. GPI-deficient blood cells often expand in patients with aplastic anemia who sustain immune-mediated marrow injury putatively induced by cytotoxic cells, hence suggesting that the injury allows PNH clones to expand selectively. We previously reported that leukemic K562 cells preferentially survived natural killer (NK) cell-mediated cytotoxicity in vitro when they acquired PIGA mutations. We herein show that the survival is ascribable to the deficiency of stress-inducible GPI-linked membrane proteins ULBP1 and ULBP2, which activate NK and T cells. The ULBPs were detected on GPI-expressing but not on GPI-deficient K562 cells. In the presence of antibodies to either the ULBPs or their receptor NKG2D on NK cells, GPI-expressing cells were as less NK sensitive as GPI-deficient cells. NK cells therefore spared ULBP-deficient cells in vitro. The ULBPs were identified only on GPI-expressing blood cells of a proportion of patients with PNH but none of healthy individuals. Granulocytes of the patients partly underwent killing by autologous cytotoxic cells, implying ULBP-associated blood cell injury. In this setting, the lack of ULBPs may allow immunoselection of PNH clones.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Reference66 articles.

1. Parker CJ, Ware RE. Paroxysmal nocturnal hemoglobinuria. In: Greer JP, Foerster S, Lukens JN, Rodgers GM, Paraskeras F, Glader B, eds. Wintrobe's Clinical Hematology, 11th ed. Baltimore, MD: Lippincott Williams and Wilkins; 2003: 1203-1221.

2. Hillmen P, Lewis SM, Bessler M, Luzzatto L, Dacie JV. Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med. 1995;333: 1253-1258.

3. Socie G, Mary JY, de Gramont A, et al. Paroxysmal nocturnal haemoglobinuria: long-term follow-up and prognostic factors. French Society of Haematology. Lancet. 1996;348: 573-577.

4. Nishimura J, Kanakura Y, Ware RE, et al. Clinical course and flow cytometric analysis of paroxysmal nocturnal hemoglobinuria in the United States and Japan. Medicine (Baltimore). 2004;83: 193-207.

5. Rosse WF, Ware RE. The molecular basis of paroxysmal nocturnal hemoglobinuria. Blood. 1995;86: 3277-3286.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3