Platelet Ca2+ responses coupled to glycoprotein VI and Toll-like receptors persist in the presence of endothelial-derived inhibitors: roles for secondary activation of P2X1 receptors and release from intracellular Ca2+ stores

Author:

Fung C. Y. Eleanor1,Jones Sarah1,Ntrakwah Adwoa1,Naseem Khalid M.2,Farndale Richard W.3,Mahaut-Smith Martyn P.1

Affiliation:

1. Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom;

2. Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom; and

3. Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom

Abstract

AbstractInhibition of Ca2+ mobilization by cyclic nucleotides is central to the mechanism whereby endothelial-derived prostacyclin and nitric oxide limit platelet activation in the intact circulation. However, we show that ∼ 50% of the Ca2+ response after stimulation of glycoprotein VI (GPVI) by collagen, or of Toll-like 2/1 receptors by Pam3Cys-Ser-(Lys)4 (Pam3CSK4), is resistant to prostacyclin. At low agonist concentrations, the prostacyclin-resistant Ca2+ response was predominantly because of P2X1 receptors activated by ATP release via a phospholipase-C–coupled secretory pathway requiring both protein kinase C and cytosolic Ca2+ elevation. At higher agonist concentrations, an additional pathway was observed because of intracellular Ca2+ release that also depended on activation of phospholipase C and, for TLR 2/1, PI3-kinase. Secondary activation of P2X1-dependent Ca2+ influx also persisted in the presence of nitric oxide, delivered from spermine NONOate, or increased ectonucleotidase levels (apyrase). Surprisingly, apyrase was more effective than prostacyclin and NO at limiting secondary P2X1 activation. Dilution of platelets reduced the average extracellular ATP level without affecting the percentage contribution of P2X1 receptors to collagen-evoked Ca2+ responses, indicating a highly efficient activation mechanism by local ATP. In conclusion, platelets possess inhibitor-resistant Ca2+ mobilization pathways, including P2X1 receptors, that may be particularly important during early thrombotic or immune-dependent platelet activation.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3