Transendothelial migration leads to protection from starvation-induced apoptosis in CD34+CD14+circulating precursors: evidence for PECAM-1 involvement through Akt/PKB activation

Author:

Ferrero Elisabetta1,Belloni Daniela1,Contini Paola1,Foglieni Chiara1,Ferrero Maria Elena1,Fabbri Monica1,Poggi Alessandro1,Zocchi Maria Raffaella1

Affiliation:

1. From the Laboratory of Tumor Immunology, the Human Virology Unit, Dibit, and the Unit of Human Immunology, Dibit, IRCCS San Raffaele, the Department of General Pathology, University of Milan, Italy; the Laboratory of Immunology, National Cancer Research Institute, and the Laboratory of Clinical Immunology, Department of Internal Medicine (DIMI), University of Genoa, Italy.

Abstract

AbstractIn the present paper we show that transendothelial migration of a subset of CD14+ circulating leukocytes, coexpressing the CD34 precursor marker, leads to protection from the apoptosis that follows growth factor(s) withdrawal. The resistance of this cell subset to starvation-induced programmed cell death, lasting from 48 to 96 hours, is accompanied by a rise of mitochondrial adenosine triphosphate (ATP), a high nicotinamide adenine dinucleotide (NAD)/reduced nicotinamide adenine dinucleotide (NADH) ratio, and by the up-regulation of expression of the antiapoptotic proteins Bcl-2 and Bcl-X, together with an increase in the cytoplasmic, inactive, form of Bax. This suggests that protection from apoptosis is due to the preservation of mitochondrial function(s). Interestingly, ligation of the platelet endothelial cell adhesion molecule-1 (PECAM-1), which drives CD14+CD34+ transendothelial migration, leads to an increase in Bcl-2 A1 and Bcl-X intracellular content, and to protection from starvation-induced apoptosis. This event is dependent on the engagement of phosphatidylinositol-3 kinase and activation of Akt/PKB that is known to contribute to Bcl-2 and Bcl-X induction. These data point to a critical role of endothelium in preventing the apoptotic program triggered by starvation, possibly inducing a prolonged survival of antigen presenting cell precursors, in order to allow recirculation of these cells and localization to the site of priming of T lymphocytes.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3