Serologic and Phenotypic Analysis of Blood Types Via Silicon Nanophotonics

Author:

Kirk James T1,Lannert Kerry W2,Ratner Daniel M1,Johnsen Jill M21

Affiliation:

1. University of Washington, Seattle, WA

2. Puget Sound Blood Center, Seattle, WA

Abstract

Abstract Tens of millions of donor and patient samples are tested yearly to establish blood type compatibility between donor and recipient and to protect recipients from blood-borne infectious diseases. Blood type testing, particularly donor testing, is traditionally based in centralized clinical laboratories. However, current blood typing methods are encumbered by reagent availability, cost, technical training requirements, and time, placing a costly burden on the medical system. To address practical needs in blood typing, we have developed a multiplexed blood analysis platform using a low-cost and scalable silicon photonic biochip. This study investigates the use of silicon microring sensors to capture, detect, and quantify specific red blood cell (RBC) membrane antigens and anti-blood type antibodies from blood. To validate ABO blood phenotyping, microring resonators were streptavidin coated and functionalized with biotinylated anti-A IgM or biotinylated anti-B IgM antibodies. First, the response of anti-A/B functionalized microring resonators to characterized RBC membranes (RBC ghosts, 108 cells/ml) were measured in real-time (Figure 1). The biosensor arrays also exhibited minimal non-specific adsorption of RBC membrane fragments to the sensor surface. Microring resonators were shown to be suitable for identifying RBC ABO phenotype from donor blood samples. For ABO serologic analysis, silicon chips were functionalized with synthetic multivalent polymeric blood group antigens to serve as capture elements for circulating anti-ABO antibodies. Each chip also had sensors functionalized with biotinylated Protein A (btn-ProtA) and a biotinylated polyacrylamide polymer scaffold (btn-paa) to serve as on-chip positive and negative controls, respectively. The multiplexed biosensor chips were exposed to 100mL of plasma, followed by an anti-human-IgM antibody to enhance detection and quantification of antibodies bound to the surface. The resonance shift in each microring resonator was monitored over time, and the sensor response of the polymeric A and B blood group antigens was normalized to the control sensors. Figure 2 illustrates the levels of bound anti-A and anti-B for a panel of donor blood samples with varying ABO blood type, expressed as a relative shift in sensor resonance wavelength. These results demonstrate the detection of the ‘naturally occurring' anti-A/B IgM antibodies for each respective ABO blood type. We have demonstrated that microring resonator biosensor arrays can quantitatively determine the donor ABO phenotypic and serologic status while incorporating on-chip controls for process standardization. Our work serves as proof-of-concept that a multiplexed silicon nanophotonics platform can rapidly detect both RBC antigens and anti-RBC antibodies in biological samples. This method has the potential for broad applicability in hematology and transfusion medicine for blood typing, quantitative monitoring of specific antibodies, and pathogen screening. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3