Efficacy of Humanized CD19-Targeted Chimeric Antigen Receptor (CAR)-Modified T Cells in Children and Young Adults with Relapsed/Refractory Acute Lymphoblastic Leukemia

Author:

Maude Shannon L12,Barrett David M.32,Rheingold Susan R.32,Aplenc Richard23,Teachey David T32,Callahan Colleen1,Baniewicz Diane1,White Claire1,Talekar Mala K.4,Shaw Pamela A5,Brogdon Jennifer L6,Young Regina M7,Scholler John7,Marcucci Katherine T.7,Levine Bruce L7,Frey Noelle7,Porter David L7,Lacey Simon F.7,Melenhorst J. Joseph7,June Carl H7,Grupp Stephan A.123

Affiliation:

1. Division of Oncology, Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, PA

2. Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA

3. Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA

4. Children's Hospital of Philadelphia, Philadelphia, PA

5. Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA

6. Novartis Institute for Biomedical Research, Cambridge, MA

7. Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA

Abstract

Abstract Background Targeted immunotherapy with CTL019, CD19-specific chimeric antigen receptor (CAR)-modified T cells, can produce potent and sustained responses in children with relapsed/refractory acute lymphoblastic leukemia (ALL). However, a subset of patients has limited persistence, which can increase the risk of relapse. Most CAR single chain variable fragment (scFv) domains, including that of CTL019, are of murine origin; therefore, anti-mouse reactivity is one potential cause of immune-mediated rejection that may be overcome by fully human or humanized CAR designs. We developed a humanized anti-CD19 scFv domain and now report on treatment with humanized CD19-directed CAR T cells (CTL119). Design A pilot/phase 1 study of CAR-modified T cells containing a humanized anti-CD19 scFv domain (CTL119) enrolled children and young adults with relapsed/refractory B-ALL with or without prior exposure to a CAR T cell product. Patients previously treated with CD19-specific CAR-modified T cells were eligible if they met 1 of 3 criteria: 1) CD19+ relapse 2) no response to prior CAR T cell therapy or 3) early B cell recovery indicating poor persistence of CAR T cells. Patient-derived T cells were transduced ex vivo with a lentiviral vector encoding a CAR composed of CD3z, 4-1BB, and humanized anti-CD19 scFv domains and activated/expanded with anti-CD3/CD28 beads. The humanized scFv domain was developed by grafting the complementary determining regions of both the heavy and light chains onto human germline acceptor frameworks. Patients received lymphodepletion with cyclophosphamide and fludarabine 1 week prior to infusion with CTL119. Results Thirty children and young adults aged 29 mo-24 yr were infused with CTL119. Eighteen patients had received prior allogeneic stem cell transplant (SCT). Eleven patients who previously received murine-derived CD19-specific CAR-modified T cells (CTL019, n=7; other, n=4) were retreated for B cell recovery (n=5), CD19+ relapse (n=5), or no response to prior CAR T cells (n=1). CNS disease or other extramedullary disease was the indication for enrollment in 6 and 3 patients, respectively. At assessment 1 month after infusion, 26/30 patients (87%) achieved a complete response (CR), defined as morphologic remission with B cell aplasia. Of 11 patients previously treated with murine CD19-specific CAR-modified T cells, 7 (64%) achieved a CR at 1 month, 4 demonstrated no response. Multiparameter flow cytometry for minimal residual disease (MRD) was negative at a detection level of 0.01% in 5/7 responding patients. Two responding patients with positive MRD progressed to CD19+ relapse at 1.6 and 3 mo. In patients with no prior exposure to a CD19 CAR T cell product, MRD-negative CR was achieved in 19/19 patients (100%). One patient relapsed with CD19+ extramedullary disease at 2.8 mo. With a median follow-up of 4.2 mo (range, 1.0-14.1 mo) for all responding patients in both cohorts, 23/26 remain in remission with 1 proceeding to SCT in remission. B cell aplasia, a functional marker of CD19-targeted CAR T cell persistence, continued for 3 months or more in 11/18 patients with adequate follow-up: 1/6 retreatment, 10/12 CAR-naïve. Cytokine release syndrome (CRS) was observed in 28/30 patients and mild in most patients (grade 1, n=6; grade 2, n=18). Three patients experienced grade 3 CRS requiring supplemental oxygen or low-dose vasopressor support and 1 experienced grade 4 CRS requiring high-dose vasopressor and ventilatory support. Severe CRS was successfully managed with the IL6R antagonist tocilizumab in 3 patients. Neurologic toxicity included encephalopathy (n=5) and seizure (n=4) and was fully reversible. Conclusion In the first study of humanized anti-CD19 CAR T cells, CTL119 induced remissions in children and young adults with relapsed/refractory B-ALL, including 64% of patients previously treated with murine CD19-directed CAR T cells and 100% of CAR-naïve patients. Further investigation into CAR T cell persistence and anti-CAR responses will be vital to improve durable remission rates in this highly refractory population. Disclosures Maude: Novartis: Consultancy. Barrett:Novartis: Research Funding. Teachey:Novartis: Research Funding. Shaw:Novartis: Research Funding; Vitality Institute: Research Funding. Brogdon:Novartis: Employment. Scholler:Novartis: Patents & Royalties: Royalties, Research Funding. Marcucci:Novartis: Research Funding. Levine:GE Healthcare Bio-Sciences: Consultancy; Novartis: Patents & Royalties, Research Funding. Frey:Amgen: Consultancy; Novartis: Research Funding. Porter:Novartis: Patents & Royalties, Research Funding; Genentech: Employment. Lacey:Novartis: Research Funding. Melenhorst:Novartis: Research Funding. June:Novartis: Honoraria, Patents & Royalties, Research Funding; Celldex: Consultancy, Equity Ownership; Pfizer: Honoraria; Immune Design: Consultancy, Equity Ownership; Johnson & Johnson: Honoraria; Novartis: Honoraria, Patents & Royalties, Research Funding; Tmunity Therapeutics: Equity Ownership. Grupp:Pfizer: Consultancy; Jazz Pharmaceuticals: Consultancy; Novartis: Consultancy, Research Funding.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3