Accurate and independent measurement of volume and hemoglobin concentration of individual red cells by laser light scattering

Author:

Mohandas N,Kim YR,Tycko DH,Orlik J,Wyatt J,Groner W

Abstract

Abstract Cell volume (MCV) and hemoglobin concentration (MCHC) are the red cell indices used to characterize the blood of patients with anemia. Since the introduction of flow cytometric methods for the measurement of these indices, it has generally been assumed that the values derived by these instruments are accurate. However, it has recently been shown that a number of cellular factors, including alterations in cellular deformability, can lead to inaccurate measurement of cell volume by these automated instruments. Because cell hemoglobin concentration and hematocrit are computed from the measured values of cell volume, accuracy of these indices is also compromised by inaccurate determination of cell volume. A recently developed experimental flow cytometric method based on laser light scattering, which can independently measure volume and hemoglobin concentration, has been used in the present study to measure MCV and MCHC of density- fractionated normal and sickle red cells, hydrated and dehydrated normal red cells, and various pathologic cells. We found that the new method accurately measures both volume and hemoglobin concentrations over a wide range of MCV (30 to 120 fL) and MCHC (27 to 45 g/dL) values. This is in contrast to currently available methods in which hemoglobin concentration values are accurately measured over a more limited range (27 to 35 g/dL). In addition, as the experimental method independently measures volume and hemoglobin concentration of individual red cells, it allowed us to generate histograms of volume and hemoglobin concentration distribution and derive coefficient of variation for volume distribution and standard deviation of hemoglobin concentration distribution. We have been able to document that volume and hemoglobin concentration distributions can vary independently of each other in pathologic red cell samples.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3